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Abstract

The use of Proper Orthogonal Decomposition (POD) for reduced order modeling

(ROM) of fluid problems is extended to high-speed compressible fluid flows. The challenge

in using POD for high-speed flows is presented by the presence of moving discontinuities

in the flow field. To overcome these difficulties, a domain decomposition approach is devel-

oped that isolates the region containing the moving shock wave for special treatment. The

domain decomposition implementation produces internal boundaries between the various

domain sections. The domains are linked using optimization-based solvers which employ

constraints to ensure smoothness in overlapping portions of the internal boundary.

This approach is applied to three problems with increasing difficulty. The ability of

POD/ROM to model a high-speed quasi 1-D nozzle flow is analyzed first. The quasi 1-D

nozzle contains a standing shock which is moved in a quasi-steady manner by varying the

ratio of specific heats (γ). Next, reduced order modeling for quasi-steady shock motion in

a two-dimensional high-speed flow is studied. A 2-D blunt body flow containing a strong

bow shock is the subject of this analysis. The bow shock is moved by varying boundary

parameters. Lastly, the approach is applied to a transonic aeroelastic problem that involves

large motions of a normal shock. 2-D inviscid flow over an elastic panel produces transonic

limit cycle oscillations under certain panel parameters and free stream conditions. Panel

flutter in the transonic regime results in the large motion of a transonic normal shock across

the panel surface. Previously, no reduced order modeling method has been successfully

applied to this problem.

The accuracy and order reduction of the domain decomposition POD/ROM approach

is quantified for each application. ROMs with as large as three orders of magnitude reduc-

tion in degrees of freedom (DOFs) produce flow fields with maximum errors below 5%. One

order of magnitude in computational savings for the non-Galerkin solver implementations

accompanies this reduction in DOFs. Finally, the robustness of the reduced order models

across a wide parameter space is demonstrated.
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REDUCED ORDER MODELING

FOR HIGH SPEED FLOWS WITH MOVING SHOCKS

I. Introduction

The development of aerospace vehicles requires analysis and testing. For many applica-

tions, design analysis involves mathematical approximation via linearization of the govern-

ing dynamic equations. This enables many powerful analytical methods for the design of

aircraft structures, components and controllers. Linearized analysis also facilitates linear

design optimization for which many closed form solutions exist. The validity of designs

from linearized methods can be tested in wind tunnels with scaled vehicle models whose

performance at varying conditions is quantified and extrapolated to full scale. Computer

models are also used to supplement wind tunnel tests for aerospace designs. While quite

effective for many problems, this design methodology breaks down under conditions when

linearized dynamics models become inaccurate, when it is infeasible to replicate flight con-

ditions in a laboratory, or when the computational fluid models are so large that the cost

for multiple runs is prohibitive.

The primary cause of long run times for fluid models is the large number of degrees

of freedom (DOFs) from a discretized computational mesh. The number of arithmetic

operations to produce an approximate flow solution is proportional to the number of DOFs.

This is why large DOF fluid models require long computing times. Some flow simulations

take days of supercomputer processing time.

The desire to use computational fluid dynamics (CFD) in design analysis has moti-

vated a search for faster CFD solvers. Proper orthogonal decomposition (POD) of flow sim-

ulations was introduced in the mid 1990s to reduce the number of DOFs of flow solvers. The

literature refers to such POD based fluid models as POD reduced order models (ROMs),

where the term “order” is used to imply the number of degrees of freedom. POD/ROM

has enjoyed a great deal of success for low speed flow fields. POD has been successfully

applied to subsonic flow, and supersonic aeroelastic problems with stationary shocks (e.g.,
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see (1, 2, 3, 4, 5, 6, 7, 8, 9)). POD has also been used for low speed airfoil design (10).

Computers using the POD reduced order models can produce data fast enough to enable

some types of flow control for incompressible flow fields (e.g., see (11, 12, 13, 14, 15, 16)).

The objective of this research is to extend the use of POD/ROM to high speed flow

fields with moving shocks. Reduced order modeling for transonic aeroelastic problems is a

challenging area of research, because transonic aerodynamics are characterized by unsteady

normal shock waves. Other reduced order methods rely on some form of linearization to

limit the degrees of freedom required to resolve the nonlinear dynamics. Linearization

of a transonic flow field about some shock position will produce errant results when the

shock moves any significant amount. Due to these difficulties, reduced order methods have

not been successfully applied to the transonic moving shock problem. A shock capturing

technique is developed that uses domain decomposition (DD) in conjunction with POD.

This technique is necessary to overcome difficulties encountered when using POD to trans-

late discontinuous behavior in the flow field. The POD/ROM/DD approach mitigates this

difficulty by isolating the region of the flow field containing the discontinuity. This region

(referred to as the “shock region”) is either modeled at full order, or treated with a special

POD/ROM constructed with sufficient data to allow shock motion.

1.1 Overview of Proper Orthogonal Decomposition

POD is a technique to identify a small number of DOFs that adequately reproduce

the behavior of a large DOF flow simulation. Solving the reduced order problem requires

a reduced number of arithmetic operations and hence less computing time. The greater

the reduction in DOFs, the faster the computer produces an outcome.

The main product of the POD process is a mapping between the low and high

dimensional outcomes. Here “dimension” is interchanged with “degree of freedom,” and

the full system numerical flow solver yields the high dimensional outcomes. Each degree

of freedom in the large DOF flow simulation corresponds to a dimension in Euclidean

“N -space.” The mapping is used to transform the high dimensional problem into a low

dimensional problem in Euclidean “M -space” where M << N . The low dimensional

problem is then solved quickly, and transformed back to the high dimensional solution.
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The full order flow simulation is denoted as an operator R, whose domain and range

are all the vectors in Euclidean N -space that meet the boundary conditions for the flow

field of interest. The domain and range of R are approximated by collecting many outcomes

from the flow simulation for the specific problem being studied. These outcomes are called

“snapshots” (17) since they are like pictures of the flow field at selected times. The set

containing all possible linear combinations of the snapshots forms a linear space that

approximates the domain and range of R. These snapshots typically numbers around 80

or 100 vectors per fluid variable. They must be carefully chosen so that all the vectors in

the domain and range of R can be reasonably represented by some linear combination of

the snapshots. Since the number of snapshots (80 or 100) is generally much smaller than

the number of grid points used by the flow solver, the number of degrees of freedom are

greatly reduced by solving for 80 or 100 coefficients (per fluid variable). Note that the

snapshots must be linearly independent for this technique to work. The next step in the

POD process eases this restriction.

Every vector in the domain and range of R can be reasonably represented as a linear

combination of the snapshots. This linear combination can be written as a matrix equation.

The matrix of snapshots, where each snapshot is a separate column, forms a non-symmetric

linear transformation between any vector of coefficients and the full order vector that those

coefficients represent. The vector of coefficients is also known as the coordinates of the

full order vector, and each full order vector has a corresponding vector of coefficients or

coordinates. Now consider the collection of vectors of coordinates that map to full order

vector for the fluid problem of interest. Call this collection the “set of all coordinates.”

This set of all coordinates consists of column vectors with dimension equal to the

number of snapshots. The set of all coordinates will have a great deal of redundancy if

the snapshots are linearly dependent (even if they are nearly linearly dependent). Singular

Value Decomposition (SVD) is used on the non-symmetric matrix equation to identify an

orthogonal basis for this set of all coordinates. Much like the set of snapshots formed a

basis for the domain and range of R, SVD provides eigenvectors which form a basis for the

set of all coordinates (18), which is the domain and range of a reduced order operator R̂.

These eigenvectors are orthogonal, and their corresponding eigenvalues give a measure of
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the significance each eigenvector has when recreating the vectors in the set of all coordinates

(19). The redundancy in the snapshots is eliminated by truncating the eigenvectors with

the smallest eigenvalues. This reduced order set of coordinates has the dimension of the

number of eigenvectors with large eigenvalues. This is generally much smaller than the

number of snapshots.

A new linear matrix equation can be generated that relates vectors in the truncated

set of coordinates to vectors in the domain and range of R. This resulting non-symmetric

matrix is called the reduced order mapping. The columns of this matrix are called the

POD solution modes. They represent the coherent structures of the flow field captured by

the snapshots.

The final step is to recast the nonlinear operator using these POD solution modes

by either Galerkin (20, 19) or non-Galerkin methods (21). The high dimensional nonlinear

operator R acting on N -space, becomes a low-dimensional calculation R̂ acting on a much

smallerM -space. Once theM coefficients are obtained, the full order solution is assembled

via the linear combination of the modes multiplied by the modal coefficients. This reduced

order process projects the full order vectors into the linear space defined by the POD

modes. If the full order vector is well represented by the snapshots, then the reduced order

result is extremely accurate. If the full order vector has spatial structures that cannot be

replicated via linear combination of the snapshots, errors occur.

Previous Work in Proper Orthogonal Decomposition. Proper Orthogonal decompo-

sition was introduced by multiple sources in the 1940’s (22, 23). Until the 1980’s, the

majority of applications dealt with identifying principle structures in large sets of statisti-

cal data taken from complex problems. Applications of POD included image processing,

signal analysis, data compression, and process identification (19). The first application

of POD to analysis of fluid flow was in 1967 (24), in which POD was used to identify

dominant coherent structures in turbulent flow fields from wind tunnel data.

In the 1980’s, the computer was advanced enough to enable widespread numerical

solution to systems of partial differential equations. This gave rise to the use of computer

solutions to previously unsolved problems. Finite-element methods for structures, and a
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variety of numerical schemes for solving fluid problems emerged. The utility of such large

DOF numerical solvers was hampered by the computational burden. Both the monetary

cost of computing time, and the long wait for solutions combined to relegate the utility of

such methods to those with access to supercomputers, and the time to wait days or weeks

for a solution. This precluded the use of such models for iterative design analysis and online

applications such as control. However, it provided a new tool for fluid dynamics research.

One advance, direct numerical simulation of turbulence, opened a way for turbulence

researchers to characterize an entire turbulent flow field. Prior to this, researchers were

limited by experimental data taken at distinct locations in the flow. Direct simulation of

turbulence provided a new way to study turbulence using coherent structures (or modes)

obtained from numerical simulations via the POD technique (see (25) as an early example).

The next advance was in the use of POD modes to reconstruct lower order dynamics

models of turbulence to replace expensive full order computer representations (such as

direct numerical simulations, or large eddy simulations). The use of POD in reduced order

modeling for numerical simulation of turbulent flow dates back to 1987 (17, 26). Since then,

other applications of POD to reduced order modeling of turbulence have been reported

in the literature (27, 28, 29). A textbook has been published on the subject as well (19).

Other disciplines where the underlying dynamics require large DOF numerical simulations

have started to investigate the use of POD/ROM.

The field of aeroelastic analysis has embraced POD, beginning in 1996 (1). Aeroe-

lastic analysis with POD followed from previous work using eigenfunctions from linearized

aerodynamics equations in building reduced order aeroelastic models (30). In (1), POD

modes were used in place of the eigenfunctions from (30). This resulted in a very accurate

reduced order model, without the computational difficulties of generating eigenfunctions

from the linearized problem. Several aeroelastic modeling applications have been subse-

quently reported in the literature ((2), (3), (4), (5), (6), (7), (8)).

Advantages of POD for Reduced Order Modeling. Of the many order reduction tech-

niques published, truncated modal representations for full order flow solvers were the

only ones considered for this research because they promised the greatest order reduction.

Modal representations of fluid solutions come in a variety of forms. Known as the spec-
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tral methods for fluid dynamics, these techniques approximate the Euler or Navier-Stokes

equations with a variety of basis functions (or modes) (20). For reduced order aerodynamic

problems, a spectral method must generate reasonable solutions with a very few basis func-

tions. There are only four ways to generate such a set of basis functions currently reported

in the literature. These are wavelets (31), eigenmodes (32), balanced modes (5), and POD

modes. The use of a wavelet basis is not considered because there is no simple method for

identifying a wavelet basis from existing flow solvers for the general Navier-Stokes case.

Instead, use of wavelets requires a full system model specifically designed to identify and

use a wavelet based reduced order model (31). POD is more desireable for fluid modeling

since POD modes are more easily generated from existing flow solvers. For a description

of eigenmodes and balanced modes see (5). Both are computed by linearizing the govern-

ing aerodynamics equations, and solving the eigenvalue problem for the linearized system.

This linearization process does not retain shock motion. POD has three advantages over

other linear methods. First, POD modes are obtained from the fully nonlinear system. As

a result the POD modes can capture all the nonlinearities of the full order representation.

Second, POD modes are obtained from existing flow solvers via a simple data taking pro-

cedure. The other methods require linearization of the full order solver about a solution

of interest. The resulting computation of eigenmodes is too computationally burdensome

for large DOF problems. Finally, POD modes are optimal, meaning no other linear modal

representation of the same dimension can more accurately recreate the full order solution

(19). Therefore, POD modes will achieve a larger order reduction than the other linear

methods.

The focus of this research is to expand the use of POD to reduced order modeling

of high speed fluid flows. This requires applying POD to flow fields with moving strong

shocks. Domain decomposition has potential to allow the use of POD in generating reduced

order models for flow fields with moving discontinuities.

1.2 Previous Work in Domain Decomposition

The application of parallel computing to numerical methods in the 1980’s was closely

followed by the widespread use of domain decomposition. Domain decomposition provided
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a means to spread a large numerical simulation over many computer processors by spatially

dividing a large problem into many smaller problems that could be solved simultaneously.

In this way, domain decomposition and parallel computing improved the overall compute

time for large numerical simulations. Domain decomposition for numerical solutions to fluid

problems has been studied in several publications (e.g., see (33, 34, 35, 36, 37, 38, 39)).

Domain sections must be linked across internal boundaries if the parallel solution

method is to produce a meaningful outcome. In the past two years, domain coupling

with optimization-based solvers has emerged in the literature (40, 41, 42, 43, 44). The

technique involves setting constraints on the shared internal boundaries that are enforced

with Lagrange multipliers. The constraints can be formed on either overlapping (41) or

non-overlapping (40, 42, 43, 44) internal boundaries. Simultaneous solution of the domain

sections and the constraint equations represent an optimization problem. This has been

successfully demonstrated on a numerical solution to the incompressible Navier-Stokes

equations (42).

This research extends domain decomposition with optimization-based solvers to re-

duced order modeling of high-speed compressible flow problems. The presence of moving

shocks represents a much stronger non-linearity than previously applied. In addition, the

formulation and solvability of the reduced order optimization problem is demonstrated.

The use of domain decomposition is used for stability of the reduced order method, not

for parallelization.

1.3 Scope

This objective of this research is to use domain decomposition to generate a shock

capturing POD/ROM that efficiently and accurately reproduces high speed flow fields

with moving shocks. The accuracy, order reduction and computational performance of

this approach is demonstrated on 1-D and 2-D applications. The scope of this research is

quantified in terms of the following thesis statement, the governing assumptions, and the

outlined research approach.
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Thesis: Domain Decomposition enables the use of Proper Orthogonal Decomposi-

tion to generate reasonable low order approximations of 2-D high speed fluid flow fields

with shock movement over confined regions. Order reduction is determined relative to the

number of DOFs required by a full system model of the same flow field without the use of

POD. The utility of such reduced order models for design analysis is demonstrated through

application to 1-D and 2-D flow fields. The accuracy of POD/ROM/DD with changing

boundary conditions, free stream conditions, and flow parameters is quantified along with

the associated order reduction.

Assumptions: A CFD representation of the Euler equations is used as the full system

model in this research. Inviscid methods can be readily applied to viscous flow fields with

similar accuracy and order reduction. Accuracy of the POD/ROM/DD is quantified via

comparison with the flow field solution from the full system model. This comparison is

accomplished through appropriate error metrics. The correctness of the full system model

is checked against analytical results and/or similar results presented in the literature. The

success of POD is completely determined by how accurately it represents the full order

flow field representation from which it was derived.

1.4 Research Approach

Both quasi-steady and unsteady flows are considered in this research. Quasi-steady

cases are treated first, with applications in both 1-D and 2-D presented in order of increased

complexity. A 1-D application was solved first to identify and address the difficulties

encountered when applying POD/ROM with moving shocks. This initial investigation

involves application of the domain decomposition POD/ROM approach to a quasi 1-D

nozzle problem. Next, the domain decomposition approach is incorporated into a 2-D

research code for quasi-steady analysis. This application explores how the techniques

employed for the 1-D problem extend to higher dimensionality. Lastly, the 2-D code is

apadpted for unsteady analysis of a transonic aeroelastic problem. Unsteady applications

require different implementations than those used for quasi-steady analysis.

1-8



1.4.1 1-D Analysis. The first effort is to explore the use of POD/ROM on

a 1-D high-speed flow field with a strong, moving shock. A shock capturing technique

is developed that exploits POD and also accurately treats moving shock waves. This

technique decomposes the solution domain to isolate regions that contain shocks. A reduced

order model for each region is developed independently, and the solution for the entire

domain is formed by linking the boundaries of each region to systematically solve for the

flow field.

1.4.2 2-D Quasi Steady Analysis. The next step is to apply the POD/ROM/DD

approach to a high-speed 2-D inviscid flow field, and assess the performance in accuracy

and order reduction. High-speed flow over a 2-D blunt nosed cone is the model problem for

this study. Changes in inlet Mach number and angle of attack (AoA) result in quasi-steady

motion of a strong shock wave off the nose of the blunt body.

1.4.3 2-D Unsteady Analysis. The final application is an aeroelastic panel in

cross-flow. A nonlinear coupling of the 2-D Euler equations and the von Kármán equation

is used to simulate the dynamics of flow over a flexible panel. Inviscid flow over an elastic

plate produces transonic limit cycle oscillations (LCO) in the presence of certain panel

parameters and free stream conditions. Panel flutter in the transonic regime produces a

transonic shock that traverses the panel surface. Previous research (9) for this problem

neglected reduced order modeling of the transonic case because of the difficulties that

moving shocks pose to POD/ROM. The development of a POD/ROM to treat the transonic

case is the subject of this effort. The performance of the coupled system is assessed in

terms of accuracy, order reduction, and computational expense. The robustness of the

POD/ROM/DD to changes in panel dynamic pressure (λ) is explored to evaluate the

model’s utility for design analysis.

1.5 Research Questions

The following statements summarize they key items for investigation in this disser-

tation.
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Can POD be used to generate a reduced order model for unsteady high speed shocked

flow fields with similar order reduction and accuracy that has been reported for low speed

problems? Since such unsteady flows involve moving strong shocks, this research investi-

gates POD’s accuracy, order reduction and robustness in the presence of flow discontinu-

ities.

What is the best way to integrate POD modes into a reduced order model for high

speed flows? The method used for many low speed applications was Galerkin projection.

Galerkin projection is problematic for compressible flow problems due to difficulties in

treating nonlinear boundary conditions, therefore non-Galerkin approaches are considered

in this research. Explicit non-Galerkin methods provide proven accuracy, but the com-

putational efficiency improvement is questionable. Implicit non-Galerkin approaches and

collocation methods are investigated as well.

1.6 Document Organization

The remainder of this document is organized as follows. Chapter 2 develops the

theory for the use of POD on shocked flows. It also outlines the methodology for imple-

mentation of the various reduced order solvers. Chapter 3 records the analysis and results

for the quasi 1-D nozzle application, Chapter 4 records the 2-D blunt body analysis and

results, and Chapter 5 contains the analysis and results for the transonic aeroelastic panel

application. Chapter 6 lists the overall conclusions, highlights the significant advances

from this research, and proposes future work.
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II. Methodology

This chapter contains a description of the numerical simulation of the Euler equations used

throughout this research. A mathematical development of Proper Orthogonal Decompo-

sition is also included, followed by the implementation methods for using POD modes to

synthesize optimization-based reduced order solvers. The developments contained in this

chapter are general, and additional problem specific details are addressed in the formulation

sections of subsequent chapters.

2.1 Fluid Modeling

The dynamics of fluid flows are governed by the Navier-Stokes equations for viscous

flow, or the Euler equations for inviscid flow. The two-dimensional Euler equations are

given below in strong conservation form (45).

Ut + Ex + Fy = 0 (2.1)

U =




ρ

ρu

ρv

ET




(2.2)

E =




ρu

ρu2 + P

ρuv

(ET + P )u




(2.3)

F =




ρv

ρuv

ρv2 + P

(ET + P )v




(2.4)
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Here ρ is density, ρu is x-direction momentum, ρv is y-direction momentum, and ET is

total energy per unit mass. These four fluid variables are functions of both space and time.

The solution of the flow field can be approximated by a wide variety of numerical

techniques. To do this, both the spatial domain and the time dimension are discretized.

An approximate flow field solution at the discrete locations is obtained by finite-difference,

finite volume, or finite element techniques. A finite volume approach was used in this

research. It requires the integral form of the Euler equations shown below (45).

d

dt

∫

V

UdV +

∫

∂V

(Eı̂+ F ̂) · dS = 0 (2.5)

Solutions of the full system are obtained by numerically solving the integral Euler equa-

tions for small finite volumes within the flow field. The spatial discretization results in a

computational mesh with many finite volumes, or “cells.”

Stability of the numerical scheme necessitates small discrete steps, both spatially

and in time. The spatial discretization results in a computational grid with many nodes.

The nodes of the grid represent corners of the finite volumes, and the elements of the

numerical flow solution are attributed to locations at the center of each cell. The number

of cells increases to the power of the number of dimensions required (i.e. 1, 000 cells for a

1-D problem would be 100, 000 cells for a 2-D problem, and 1, 000, 000, 000 cells for 3-D).

Nyquist sampling rates also apply, so the grid size must consider the wavelength of the

dynamics at the node location. Viscous boundary layers are very small, thus viscous grids

require many nodes in the region of the boundary layer. For these reasons, a large number

of cells are required for numerical approximation. Each fluid variable at every cell is a

separate degree of freedom. Numerical solvers are computationally expensive due to the

large number of DOFs.

For each cell, the integral form of the Euler equations reduce to the following assuming

no grid deformation.
d

dt
Ui,j +

∑

sides

(Ei,j ı̂+ Fi,j ̂) ·
dSi,j
dAi,j

= 0 (2.6)
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The flux terms Ei,j and Fi,j are computed using first-order Roe averaging (45). Row-by-row

ordering is used to collocate flow variables at each spatial cell location to a corresponding

location in a column vector producing an overall vector of flow variables U(t).

Time integration across the computational mesh is used to obtain flow solutions.

This is accomplished with a first order accurate forward Euler approximation. Local time

stepping is incorporated into the solver to speed up convergence for steady analysis. The

need for small time steps increases the computational expense. Local time stepping can

limit the compute time required for steady state solutions, but time accurate analysis

cannot use this technique because it generates a non-physical flow evolution. Small time

steps combined with the large number of DOFs combine to make design analysis and

control impractical with this type of numerical method.

Since the Euler equations are linear in the time derivative, and quasi-linear in the

spatial derivative (45, 18), the spatial derivatives and the time derivatives in equation (2.1)

can be separated to form an evolutionary system. To accomplish this, the spatial terms

are grouped to form a nonlinear operator R acting on the set of fluid variables. The fluid

dynamics from equation (2.6) can then be expressed as,

dU(t)

dt
= R(U(t)) . (2.7)

Equation (2.7) is referred to as the full system dynamics.

External boundaries are handled with ghost cells. The fluid values for the ghost cells

at the far field boundaries are determined using characteristic boundary conditions (46).

The ghost cells for the solid wall are set to enforce a no-flow-through condition. Moving

solid boundaries are enforced with a transpiration boundary condition. A transpiration

boundary condition replaces the solid wall with blowing or suction designed to mimic the

effect of a solid boundary. For a static case, the no-flow-through condition at a solid wall

implies that the flow momentum is tangent to the solid surface for all the cells adjacent

to the surface. Flow momentum is injected (blowing) or removed (suction) such that the

flow momentum at the solid surface is turned (via vector addition) as though the solid

wall were present. For dynamic cases, additional blowing is required since the wall velocity
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imparts additional momentum to the flow, over and above the momentum needed to turn

the flow tangent to the solid surface (7, 47). Transpiration boundary conditions are valid

for small wall deflections. They are a convenient way to model dynamic solid boundaries

without moving grids. Moving grids require special treatment in the POD/ROM (48).

Solver validation is detailed in appendix D.

2.2 Domain Decomposition

Domain decomposition is used to separate the fluid problem spatially into regions,

and isolate the region of the flow experiencing the shock wave. This assumes that the

shock is confined to a spatial region of the flow field that can be reasonably identified. For

the regions of the flow field not containing a shock, no special treatment is necessary. The

region of the flow field containing a moving shock is approached in two ways. The first

approach is to us the full system model. Even though the shocked region of the flow had

no reduction in the number of DOFs, the use of POD/ROM over the non-shocked portions

of the flow field still provides a significant reduction in the number of DOFs relative to the

original problem. A second approach is to develop a reduced order model for the shocked

region of the domain decomposed flow field.

The motivation for this approach is to improve the robustness of the reduced order

model in the presence of moving shocks. The number of modes required to reproduce a flow

field with a stationary shock are few, and they are relatively simple to identify. Identifying

modes for flows with moving shocks requires much more data, enough to cover all shock

locations expected. In iterative design analysis, identifying all the solution structures a

priori might not be feasible. In these cases, only way to ensure accuracy is to use the full

system for those regions of the flow not adequately sampled by the snapshots.

Since the domain is divided into several sections, analysis for the POD/ROM/DD

involves solving several smaller fluid problems that are linked by internal boundaries. The

full system dynamics in equation (2.7) applies to each individual domain section. Internal

boundaries are handled with ghost cells which are filled with the corresponding values

from the adjacent domain. Domain overlap is necessary under certain conditions that will

be outlined in later chapters. The domain decomposition approach produces flexibility in
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choosing the set of snapshots and number of modes used to create the POD/ROM for each

section.

2.3 Proper Orthogonal Decomposition

POD is a technique to identify a small number of DOFs that adequately reproduce

the behavior of the full system. The greater the reduction in DOFs, the faster the computer

produces a solution for each time step. Time step size for stability can also be improved

using POD, since the application of POD modes exclude some of the high frequency content

that brings instability. A summary of POD as it applies to a spatially-discretized flow field

follows. A detailed description of POD is contained in appendix A.

For simplicity, only consider one fluid variable, w(t). Since the value of w(t) is

obtained using numerical approximation, w(t) is spatially descritized using N nodes, and

collocated into a large array denoted w(t). For this fluid variable, the full system dynamics

in equation (2.7) is depicted below,

dw

dt
= R(w) . (2.8)

POD produces a linear transformation Ψ between the full system solution w, and the

reduced order solution for this fluid variable ŵ is given by

w(t) =W 0 +Ψŵ(t) . (2.9)

Note that Ψ is not time varying, where w and ŵ are functions of time t. The POD

reduced order variable ŵ(t) represents deviations of w(t) from a base solution W 0. The

subtraction of W 0 will result in zero-valued boundaries for the POD modes wherever

constant boundary conditions occur on the domain. It is required when POD modes are

applied to flow problems with changing free stream conditions.

Ψ is constructed by collecting observations of the solution w(t)−W 0 at different time

intervals throughout the time integration of the full system dynamics. These observations

are called snapshots and are generally collected to provide a good variety of flow field
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dynamics while minimizing linear dependence. Alternatively, a collection of steady state

solutions can be used as snapshots. The snapshot generation procedure is sometimes

referred to as the POD training period (21).

A total of Q snapshots are collected from the full system dynamics. These are vectors

of length N . The set of snapshots describe a linear space that is used to approximate both

the domain and the range of the nonlinear operator R. The linear space is defined as

the span of the snapshots (49). POD identifies a new basis for this linear space that is

optimally convergent (19). To identify the POD basis, the snapshots are compiled into a

N×Q matrix S, known as the snapshot matrix. The mapping function Ψ is then developed

using,

STSV = V Λ (2.10)

Ψ = SV (2.11)

Here V is the matrix of eigenvectors of STS, and Λ is the corresponding diagonal matrix

of eigenvalues. To eliminate redundancy in the snapshots, the columns of V corresponding

to very small eigenvalues in Λ are truncated. The matrix of eigenvalues Λ is also resized

to eliminate the rows and columns corresponding to the removed eigenvalues. If Q −M

columns of V are truncated, the resulting reduced order mapping Ψ will be an N ×M

matrix. This reduced order mapping is a modal representation of the flow field. The modes

are the columns of Ψ which are discretized spatial functions fixed for all time. The vector

ŵ(t) is a time dependent set of coefficients representing the coordinates of w(t) projected

into the truncated linear space described by the POD basis.

The solution to the fluid dynamics requires simultaneous solution for the set of fluid

variables. The reduced order mappings for each fluid variable are developed individually.

Each fluid variable is collocated into a single array U , and the corresponding S and V

arrays are collocated as blocks into a larger set of arrays, also denoted S and V . The

reduced order mapping is now,

U(t) = U0 +ΨÛ(t) (2.12)
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This version of equations (2.9) and (2.11) applies to the entire set of fluid variables simul-

taneously.

2.4 Reduced Order Modeling

A reduced order model is obtained by recasting the full system dynamics to solve for

the reduced order variable Û(t). Several methods are contained in the literature (21), and

selection of the appropriate implementation depends on the solution strategy. Both implicit

and explicit time accurate methodologies will be developed in this research. Implicit time

stepping will be an efficient way to handle the regions of the domain decomposed flow field

when the Jacobian does not need to be recomputed regularly. Explicit time stepping will

be more efficient in regions of the flow containing stronger nonlinearities.

2.4.1 Galerkin vs. Subspace Projection Methods. For reduced order modeling

using POD modes, Galerkin projection is a common implementation method. It uses

the POD modes to recast the original dynamics equations into a small set of non-linear

ordinary differential equations (ODEs) in time (19). The recent applications of POD/ROM

to low speed flow using Galerkin projection have all treated incompressible flow (50). This

avoids complications inherent when applying Galerkin projection to the Euler equations.

The difficulty lies in the appropriate treatment of boundary conditions at a solid surface

for density and energy. For this analysis, a non-Galerkin approach was used for simplicity.

The non-Galerkin approach, also known as the subspace projection method (3), uses the

full system dynamics in equation (2.7), a forward difference approximation, and the left

inverse of the reduced order mapping from equation (2.11) to yield the following reduced

order flow solver.
dÛ

dt
= Λ−1(V TV )−1V TSTR(SV Û) (2.13)

The inverse of Λ and pseudo inverse of V exist assuming modal truncation is employed

to eliminate the zero valued eigenvalues of STS and their corresponding eigenvectors (see

appendix A for a full development). The subspace projection method relies on the full

order function evaluation R. As such, the order of the operator is not actually reduced.

However, this allows for study of POD accuracy and order reduction without the use of
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Galerkin projection. Also, compute time savings can be achieved for both explicit and

implicit solver implementations. This will be demonstrated in the results. The application

of Galerkin projection to compressible flow problems with nonlinear, coupled boundaries

will be discussed in Future Research.

2.4.2 Steady Formulation. Although the equations governing the reduced order

operator R̂(Û) are never explicitly obtained by the subspace projection method, the value

of the reduced order operator at any time can be obtained from equation (2.13) using the

full order function evaluation R(U),

R̂(Û) = Λ−1(V TV )−1V TSTR(SV Û) . (2.14)

For a reduced order vector of flow variables Û , the steady-state solution is obtained when

the reduced order operator R̂(Û) vanishes. This solution can be obtained by either explic-

itly time marching to steady state, or by solving implicitly with Newton iterations.

2.4.2.1 Explicit Method. Explicit integration to steady state for the reduced

order solver is accomplished using forward Euler time integration,

Û
n+1

= Û
n
+∆tlocalΛ−1(V TV )−1V TSTR(SV Û

n
) . (2.15)

Here ∆tlocal denotes a vector of time steps, one for each node that is maximized for local

stability of the time integration. This local time stepping scheme greatly reduces the

number of time steps required to reach steady state.

2.4.2.2 Implicit Method. Implicit steady analysis is accomplished using a

chord method implementation (21). The chord method is essentially Newton’s method

with numerically approximated Jacobians. The Newton iterations (for iteration ν to ν+1)
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at reduced order are,

R̂(Ûν) = Λ−1(V TV )−1V TSTR(Uν)

∆Û =

[
dR̂(Û)

dÛ

]−1
· R̂(Ûν)

Û
ν+1

= Û
ν
+∆Û

Uν+1 = U0 +Ψ · Ûν+1 .

Notice that the full order function call is required for each Newton iteration. The reduced

order Jacobian is not updated between Newton iterations to reduce computational cost.

The reduced order Jacobian can be quickly identified using the full order solver,

dR̂(Û)

dÛ
=

d

dÛ

[
Λ−1(V TV )−1V TSTR(U)

]

dR̂(Û)

dÛ
= Λ−1(V TV )−1V TST

dR(U))

dÛ
. (2.16)

Next the chain rule is applied,

dR(U)

dÛ
=

dR(U)

dU

dU

dÛ

U = U IC +ΨÛ

dU

dÛ
= 0 +

d

dÛ

[
ΨÛ

]

dU

dÛ
= 0 +Ψ

dÛ

dÛ

dU

dÛ
= Ψ

dR(U))

dÛ
=

dR(U)

dU
Ψ ,

and remembering that Ψ = SV yields the final relationship,

dR̂(Û)

dÛ
= Λ−1(V TV )−1V TST

dR(U))

dU
SV . (2.17)
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For computational purposes it was much more efficient to obtain the reduced order Jacobian

numerically from equation (2.16). The Jacobian was obtained using a central difference

approximation. Equation (2.16) only required 2M function calls to the full order solver

(M being the number of reduced order variables) in comparison to 2N function calls (N

being the total number of DOFs) required when using equation (2.17). Once obtained,

the reduced order Jacobian did not need to be recalculated between Newton iterations for

domain sections exhibiting linear flow field behavior.

2.4.3 Time Accurate Formulation. Time accurate formulation approximates the

flow field evolution from initial condition to fully developed flow. Convergence enhance-

ments which can make steady solvers very efficient are not useful for the unsteady case.

This makes time accurate formulation the more computationally cumbersome implemen-

tation. Consequently, the potential speed-up from the use of POD/ROM is most needed

for unsteady analysis.

2.4.3.1 Explicit Method. Time accurate explicit integration for the reduced

order solver is accomplished using the first order accurate, forward Euler, time integration,

Û
n+1

= Û
n
+∆tΛ−1(V TV )−1V TSTR(SV Û

n
) . (2.18)

Here ∆t denotes a global time step which is generally small to preserve stability for the

smallest node spacing in the domain. This time accurate integration scheme is computa-

tionally burdensome, however the CFL condition for stability is increased by the subspace

projection method (3). This simple integration scheme has been used to explore the use

of POD for a variety of applications (3, 21, 9).

2.4.3.2 Implicit Method. The chord method is used to implicitly obtain

time accurate solutions. Consider the implicit time integration function F :

F (Un+1) = Un+1 − Un −∆tR(Un+1) . (2.19)
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The value of Un+1 that results in F (Un+1) = 0 is the solution for the flow field at time

tn+∆t from Un. The Newton iterations to obtain this solution (for sub-iterate ν to ν+1)

at reduced order are shown below.

F̂ (Ûν) = Λ−1(V TV )−1V TSTF (Uν)

∆Û =

[
dF̂ (Û)

dÛ

]−1
F̂ (Ûν)

Û
ν+1

= Û
ν
+∆Û

Uν+1 = U0 +ΨÛ
ν+1

As in the steady formulation, the full system function call is required for each Newton

iteration. The reduced order Jacobian can be quickly identified using equation (2.16),

d

dÛ
F (U) =

d

dÛ
[U − U last −∆tR(U)]

ΨÛ = U − U0
dF (U)

dÛ
= Ψ−∆t

dR(U)

dÛ
(2.20)

and,

dF̂ (Û)

dÛ
=

d

dÛ

[
Λ−1(V TV )−1V TSTF (U)

]

dF̂ (Û)

dÛ
= Λ−1(V TV )−1V TST

dF (U))

dÛ
. (2.21)

2.5 Domain Coupling with Optimization

Under certain conditions, constraints must be introduced into the reduced order

solver to enforce smoothness on the internal boundary between adjacent domains. This

is necessary when the domain coupling provided by the use of ghost cells and the full

system dynamics is not sufficient to ensure continuity. Consider the case where the internal

boundary between two adjacent regions overlap, such that the outer boundary of one region

extrudes beyond the inner boundary of the adjacent region by a few cells. When computing

solutions for each individual domain at reduced order, the flow field from both domains
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should match in the overlapping portion of the flow field. When this does not occur, a

constraint can be included to force the flow field sections to match in the overlap region.

A constrained optimization method is developed below, which is later applied to steady,

quasi-steady, and unsteady analysis of the POD/ROM/DD.

Consider US1 and US2 as adjacent domains with a shared internal boundary Γ. The

domains overlap on the internal boundary, and the sections combine to form the fluid

vector U ,

U =


 US1

US2


 . (2.22)

Two constraint options are considered. The first constraint C1 can be written as

C1(U) =
∑

i∈Γ

U(i)S1 − U(i)S2 = 0. (2.23)

This is similar to requiring the mean difference be zero on the boundary, and C1 approx-

imates the L1 norm. Notice that the absolute value is not included. This weakens the

constraint since negative errors can be cancelled by positive errors of equal magnitude;

however, neglecting the absolute value improves computational performance. The solver

formulation will use the first and second derivatives of the constraints (look ahead to equa-

tion (2.31). When the C1 constraints are used without the absolute values, the first and

second derivatives are a constant function and zero respectively. This allows the Jacobian

to be pre-computed prior to solver integration, significantly reducing compute time. This

is discussed more thoroughly in chapter 5. If an absolute value is introduced, the first

and second derivatives are both functions of the flow variables, and pre-computing the

Jacobian is not possible. Instead of using the absolute value on the C1 constraint, the

squared difference is constrained to zero which is written as

C2(U) =
∑

i∈Γ

(U(i)S1 − U(i)S2)
2 = 0. (2.24)

This is similar to requiring the variance be zero on the boundary, and C2 approximates

the L2 norm. Like including the absolute value on the C1 constraint, the use of the C2
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expression provides a much stronger constraint, and the computational load is increased

because the first and second derivatives are functions of flow variables. However, the

derivative expressions are much simpler with C2 constraints than the case of absolute

value on the C1 constraints, which is why this formulation is preferred.

For the time accurate case, a functional `(U) is defined such that,

d`(U)

dU
= F (U) , (2.25)

where F comes from equation (2.19). For steady analysis, `(U) is defined such that d`(U)
dU =

R(U) where R is the nonlinear, spatial operator from the full system dynamics. In either

case, solving for the critical values of `(U) is equivalent to solving either F (U) = 0, or

R(U) = 0, i.e. finding the flow solution of interest. Either C1 or C2 constraints are

introduced to force the flow field from both sections to match in the overlapping portion of

their respective domains. In some cases a series of constraints is used. The constraints are

themselves functionals that produce scalar outcomes. These scalar outcomes tend to zero

when the flow variables for the overlapping sections approach equality. For overlapping

fluid variables that are not identical, the constraint functionals produce a small scalar

residual.

The following development is for a single constraint, C(U). Lagrange constrained

optimization minimizes `(U) subject to the constraint through the use of a Lagrange multi-

plier, λ, introduced as an additional degree of freedom. Lagrange-constrained optimization

(51) modifies `(U) by adding the linear constraint to form the function Q(y):

Q(y) = `(U) + λ C(U) . (2.26)

The solution vector is augmented to include λ,

y =




US1

US2

λ


 =


 U

λ


 . (2.27)
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The critical values of Q are the values of U and λ such that

G(y) =
dQ(y)

dy
=


 F (U) + λdC(U)dU

C(U)


 = [0]. (2.28)

As long as the constraints are linearly independent, and the fluid problem has a unique

solution, the critical value will be the unique minimizing function for Q (51). The reduced

order mapping includes the Lagrange multiplier:

y =




Ψ1 [0] 0

[0] Ψ2 0

0 0 1







ÛS1

ÛS2

λ


 (2.29)

which is rewritten as,

y = Ψλŷ . (2.30)

Newton iterations are used to solve the reduced order system for ŷ. The flow field is

obtained by expanding ÛS1, and ÛS2 with reduced order mappings for each section, after

which λ is discarded. The reduced order Jacobian comes from the full order Jacobian,

dG(y)

dy
=




dF (U)
dU + λd

2C(U)

dU2

dC(U)
dU

dC(U)
dU 0


 (2.31)

dĜ(ŷ)

dŷ
=

(
ΨT
λΨλ

)−1
ΨT
λ

dG(y)

dy
Ψλ . (2.32)

2.6 Summary

The applications that follow all employ the theory contained in this chapter. The

discussion of optimization-based reduced order solvers was general, and additional problem

specific details are addressed in the formulation sections of subsequent chapters. In the

next chapter, the use of POD/ROM with moving shocks is explored in the most simple of

applications: a quasi 1-D nozzle flow.
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III. Analysis of a One-Dimensional Nozzle Flow

3.1 Introduction

This chapter addresses the application of POD/ROM to a 1-D high-speed flow field

with a strong, moving shock. The challenge in using POD for high-speed flow fields is

presented by the presence of moving shock waves in such flows. Current techniques for

generating POD/ROMs, as used for low speed analysis, do not generate useful ROMs for

the high-speed case with moving shocks. POD/ROMs generated in this manner required

too much data to be useful, and they cannot be relied upon to track changes in shock

location as the boundary conditions or flow parameters are changed. Instead, the methods

from the previous chapter are applied to accurately treat the moving shock. Domain

decomposition is used to isolate the shock. A reduced order model for each region is

developed independently, and the solution for the entire domain is formed by linking the

boundaries of each region to systematically solve for the flow field.

3.2 Quasi 1-D Nozzle

A quasi 1-D divergent nozzle was used for the model problem as shown in Figure

3.1. A quasi 1-D nozzle accounts for the area change of the nozzle by inserting a forcing

function into the 1-D Euler equations. The resulting solution is interpreted as the flow field

at the centerline of the nozzle. A numerical solver based on Roe’s scheme for this simplified

flow field was used as the full system from which various POD/ROMs were generated and

compared. The numerical solver for this application is described in detail because it was

slightly different from the finite volume solver described in the previous chapter.

For unsteady one-dimensional flow in a duct of variable (but known) cross-sectional

area, the Euler equations (in conservation form) reduce to the equation set given below

(52).

Ut + Ex = Z (3.1)
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Supersonic Inlet
Conditions Subsonic

Exit Conditions

Shock

Area(x)

Figure 3.1 Quasi 1-D Nozzle

U =




ρA

ρuA

ρETA


 (3.2)

E =




ρuA

(ρu2 + P )A

(ρET + P )uA


 (3.3)

Z =




0

−P dA
dx

0


 (3.4)

The following profile was used for nozzle area A(x),

A(x) = 1.398 + 0.347 tanh(0.8x− 4) . (3.5)

Roe’s scheme (45) was used to explicitly solve the entire flow field by discretizing the spatial

domain into a fine grid, and time marching from a known initial condition via small time

steps. The inlet was at x = 0, and the inlet boundary conditions (non-dimensional) were

ρin = 0.5020, uin = 1.299 ⇒ (ρu)in = 0.6521, and ET in = 1.3758. The characteristic

length L was 1. The nozzle exit was at x = 10, and the exit boundary condition was
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ρout = 0.776. The fluid modeled was air with γ equal 1.4. For these conditions, a shock

forms in the nozzle at x = 4.816 (52).

3.3 Shocks with POD

For the initial analysis, POD/ROMs were generated without domain decomposition,

and without any special treatment for the shock. A POD/ROM was constructed using 100

snapshots taken from time integration of the full system for the quasi 1-D nozzle problem

at 1s intervals. For the chosen initial conditions, the solver very closely reached steady

state by 100s. For this experiment, an evenly spaced 63 grid point mesh was used.

The chosen initial condition (ρ(x, 0), (ρu)(x, 0), ET (x, 0)) was simply a linear function

of x connecting the inlet and exit boundary conditions with reasonably close estimates

for the final values of the unspecified inlet and exit flow variables. For example, ρ was

specified only at the nozzle exit. The initial condition for density was a line connecting

this specified exit value with an approximation of the steady state value of ρ at the inlet.

As repeated integrations were applied to this initial condition, the inlet values ρ(0, t) were

unconstrained, but the exit value ρ(xf , t) stayed fixed. The resulting flow field took a wide

range of functional forms; from smooth linear functions to discontinuous ones.

The flow field transient converged to steady state after a 100s time integration. For

brevity, density is the lone fluid variable considered. The first 7s are shown in the first

frame of Figure 3.2. Each line is a snapshot of the full order density solution at 1s intervals

in time. Notice that the shock wave formed in the first 7s, and it formed about 1 distance

unit down stream (x ≈ 5.8) of the steady state shock location (x = 4.816). The next 23s

are shown in the middle frame of Figure 3.2. During this time period, the shock wave

moved up stream to x ≈ 4.3, which was well up stream of the final steady state shock

location. The final portion is depicted in the final frame of Figure 3.2. The shock locations

underwent smaller oscillations and finally settled at the steady state value of x = 4.816.

The POD/ROM was able to reproduce these dynamics, including the shock motion.

An exceptionally good representation was obtained using 58 total modes generated from

the set of 100 snapshots (20 modes for ρ, 19 modes for ρu, and 19 modes for ET ). Every
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Figure 3.2 Density Function t = 0→ 7s, t = 7→ 30s, and t = 30→ 100s

metric considered indicated a close adherence to the true spatial solution for each fluid

variable at each point in time. The largest Lmax for any fluid variable was only 1.15%.

This indicates that there is no place or time that the reduced order model does not closely

match the true solution. The largest L2err for any fluid variable at any time was only

0.404%, indicating that spatial features of the solution were also closely tracked for all

time. POD/ROM provided exceptional solution accuracy while reducing the order from

189 degrees of freedom to 58.

Depending on the application, errors of 5% on the average might be acceptable. This

was achieved with about 45 modes (15 modes for ρ, 15 modes for ρu, and 15 modes for

ET ). From 36 to 28 modes, the reduced order model generated a reasonable approximation

of the full order solution for most of the trajectory. Reduced order models below 25 modes

were of questionable use. Also, the POD/ROM became less accurate when too many modes

were included. Instabilities arose that prevented the reduced order model from reaching

steady state when too many modes were included.

The columns of Ψ were the basis functions (or modes) that the reduced order model

used to linearly reconstruct the time evolution of the flow. These modes were ordered

by the size of their eigenvalues, with the modes contributing the most geometrically to

the snapshot data occupying the earliest columns of Ψ. The initial function ρ(x, 0), a

linear initial density function, was subtracted from each snapshot in this implementation.

Thus, the modes represented the residual spatial dynamics of the time evolution. Time

integration of the reduced order model sequentially updated the solution with a POD

based residual. The largest 10 modes are shown below in Figure 3.3. Notice that there

were two distinct regions in the spatial modes for density. Between x ≈ 4.5 and x ≈ 6
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Figure 3.3 Density Modes 100s Case 1→ 10

sharp gradients and jagged transitions were prominent. Observing the y-axis scaling, the

magnitude of these dynamics decreased slowly from modes 1 to 10. In contrast, outside

this region a great majority of the non-zero modal contribution was contained in the first

mode. Modes 8 and 9 also had a noticeable contribution to make. The major contribution

to the need for a large number of modes in the POD/ROM was the region of the flow

field containing the shock. Outside this range a 4 or 5 mode solution would probably have

sufficed.

Initially it was unclear whether the existence of a shock in the flow field intrinsically

required more modes, much like the need for a large number of Fourier sine modes to

recreate a step function. As is evident in Figure 3.3, POD identifies discontinuous modes to

track discontinuous functional behavior. Many modes were required in the region between

x ≈ 4.5 and x ≈ 6 because of the motion of the shock wave. Few modes were required

outside this region because there was not a great disparity between the initial and final

states. It was the dynamics of the spatial solution in time that mattered to the POD/ROM,

not the presence of spatial discontinuities in the solution.

To illustrate that relatively stationary shocks do not require a large number of modes,

a POD/ROM was developed to replicate the last 30s of the 100s time integration. This

comprised a sequence of functions that is nearly converged to the steady state value.

For this case there was no formation of a shock from a smooth initial condition. Also,

the movement of the shock was limited to two grid points. Even though the flow field

3-5



0 2 4 6 8 10 12
0

0.5

1

M
od

e 
1

0 2 4 6 8 10 12
−0.05

0

0.05

M
od

e 
2

0 2 4 6 8 10 12
−0.05

0

0.05

M
od

e 
3

0 2 4 6 8 10 12
−5

0

5
x 10

−3

M
od

e 
4

0 2 4 6 8 10 12
−5

0

5
x 10

−3

M
od

e 
5

X Position

0 2 4 6 8 10 12
−1

0

1
x 10

−3

M
od

e 
6

0 2 4 6 8 10 12
−5

0

5
x 10

−4

M
od

e 
7

0 2 4 6 8 10 12
−2

0

2
x 10

−4

M
od

e 
8

0 2 4 6 8 10 12
−1

0

1
x 10

−4

M
od

e 
9

0 2 4 6 8 10 12
−1

0

1
x 10

−4

M
od

e 
10

X Position

Figure 3.4 Density Modes 30s Case 1→ 10

contained a spatial discontinuity, it should be possible to generate an accurate POD/ROM

with much fewer modes than necessary for the 100s case. A POD/ROM was generated

from a set of 30 evenly spaced snapshots.

An exceptionally good representation of the full order trajectory was obtained using

only 9 total modes (3 modes for ρ, 3 modes for ρu, and 3 modes for ET ). The largest

Lmax for any fluid variable was only 1.4% indicating that there was no place or time that

the reduced order model did not closely match the true solution. The largest L2err was

only 0.707%, indicating that spatial features of the solution were also closely tracked for

all time. Also, a very useful reduced order model (average errors < 5%) was generated

from even fewer modes (2 modes for ρ, 3 modes for ρu, and 2 modes for ET for a total of

7 degrees of freedom). This is in stark contrast to the 58 modes required for exceptionally

accurate reproduction of the 100s case. The fact that both cases involved flow fields with

discontinuities shows that the number of required modes is not intrinsically increased for

shocked flows. Consider the density modes generated for the 30s case shown in Figure

3.4. Unlike the modes for the 100s case, the region of sharp gradients and jagged edges

is very small (x ≈ 4.75 → 5.1) and the amplitude diminishes quickly for increasing mode

numbers. By the fourth mode, the spatial contribution of the modes are greater in the

smooth regions of the flow field than for the location of the shock. Clearly the presence of

the discontinuity was readily recreated with only the first three modes. This was also the

case for the smooth portions of the flow field, which was recreated with three modes as well.
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Since the POD/ROM created discontinuous modes to represent discontinuous flow fields,

a very few of these modes were adequate in representing the relatively stationary shock.

Traditional spectral methods attempt to recreate discontinuous flow fields with smooth

basis functions (complex exponentials, Chebyshev polynomials, and Legendre polynomials)

(20). A great many modes are required to accurately recreate a discontinuous function

from a set of smooth functions.

3.4 Robustness of POD/ROM

POD modes are generated to match the geometry of all the functions that can be

created by a linear combination of the set of snapshots. As shown above, replicating

discontinuous behavior of functions sampled by the snapshots was no problem for POD.

However, design iteration using POD/ROMs may require POD to produce results that

wander outside the original set of candidate snapshots from which the POD/ROM was

formed. This is because the set of snapshots is formed using outcomes of the full system,

which are very expensive (computationally) to generate. The value of the reduced order

model will be its ability to generate accurate flow solutions that have not been produced

by the full system. For low-speed flows, flow structures inherent in POD modes are ade-

quate for a wide range of full order solutions. As a result POD reduced order models are

reasonably robust for low-speed incompressible flows (19). As will be shown, this is not

the case for high-speed compressible flows with moving strong discontinuities. A function

containing a discontinuity at one location cannot translate that discontinuity to another

location under linear addition with another function, unless that second function has a

discontinuity at the new location as well. Since POD is a linear technique, for POD to

move a shock, both shock locations must reside in the original set of snapshots. It would

seem this requires a full system outcome for every shock location of interest, which might

defeat the purpose of the reduced order model.

To illustrate this condition, the POD/ROM from the 100s case was used to model

a flow field slightly different from the flow field used to form it. Small changes in γ were

made to move the steady state shock location incrementally downstream. The steady

state solution for density at several values of γ is shown in Figure 3.5. These results were
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obtained from the full system. Using the same linear initial condition described earlier,
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Figure 3.5 Shock Motion with Varying γ

the POD/ROM from the 100s case was time integrated with the new value of γ. The

POD/ROM for the 100s case would not converge to a steady state solution for a drop in

γ beyond 1.398. For larger drops in γ, the POD/ROM time integrations went unstable

during the transient period as the shock attempted to settle at the new downstream shock

location. This occurred because the spatial region containing the shock motion captured in

the snapshots at γ = 1.4 did not coincide with the range of shock motion as γ was reduced.

None of the modes in the POD/ROM contained a discontinuity outside the original range

of shock motion, so the shock could not be formed at the proper location. As a result, the

POD/ROM went unstable.

To further illustrate this lack of robustness, a POD/ROM for the 100s case with

γ = 1.4 was created on a refined grid of 250 evenly spaced grid points. Previously, 100

snapshots at 1s intervals were adequate to produce a very accurate POD/ROM when the

full order solution contained 63 evenly spaced grid points. However, with the grid refined

to 250 grid points, no number or combination of modes from a set of 100 snapshots taken

at 1s intervals would produce a working POD/ROM. In every instance the POD/ROM

would go unstable during the time integrations as the shock was moving in the transient
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period. This instability occurred because the shock motion during the transient period

covered a great many more grid points when the grid was refined. Since the modes must

contain a discontinuity for every shock location, many more than the 100 snapshots would

be required for this POD/ROM to function.

These experiments confirmed that current techniques for generating POD/ROMs, as

used for low-speed analysis, were inadequate for high speed analysis of flows with moving

shocks. POD/ROMs generated this way required a great many snapshots; one for each grid

point traversed by a shock wave. POD/ROMs generated in this fashion were not robust

to parameter changes in the flow field. Essentially, this POD/ROM could only reproduce

shock behavior obtained from expensive runs of a full system model. It could not extend

the full order results to study new shock behavior.

3.5 Domain Decomposition

Domain decomposition was introduced to isolate the region of the flow field contain-

ing the moving shock for special treatment. For the regions of the flow field not containing a

shock, a POD ROM can be generated using the methods developed for low-speed flow prob-

lems. The region (or regions) of the flow field containing moving shocks was approached in

two ways. The first method was to us the full order simulation. Even though the shocked

region of the flow had no reduction in the number of DOFs, the use of POD/ROM over the

non-shocked portions of the flow field still provided a significant reduction in the number of

DOFs relative to the original problem. Another possibility involved developing a reduced

order model for the shocked region of the domain decomposed flow field. POD was used

as a tool to search for a modal representation that allowed for both order reduction and

accurate shock movement. Since the isolated shock domain was a very small portion of the

entire solution domain, snapshot collection and POD/ROM development for this region

was more efficient, allowing the reduced order model to be generated without excessive

expense.

For the quasi 1-D problem, the domain was decomposed into three regions as shown

in Figure 3.6. Section I started at the nozzle inlet and ended prior to the shock, thus the

flow was supersonic throughout section I. Section II began at the exit of section I and
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ended after the shock, thus section II had a supersonic inlet and a subsonic exit. Section

III consisted of the rest of the nozzle to the exit, and contained all subsonic flow. Section

I and III were modeled with POD/ROMs. Both full order and reduced order approaches

for section II were studied.

Supersonic Inlet
Conditions Subsonic

Exit Conditions

Shock

Area(x)
Supersonic

Inlet

Shock

=

Section I Section II Section III

Supersonic
Exit for I

Supersonic
Inlet for II =Subsonic

Exit for II
Subsonic

Inlet for III
Subsonic

Exit

Figure 3.6 Domain Decomposition for the Quasi 1-D Nozzle

3.5.1 Explicit Formulation and Results. Initially, an explicit time integration of

the three sections was used to produce a reduced order solution for the POD/ROM/DD

with a full order section II. Time integration for the POD/ROMs of sections I and III

was accomplished using equation (2.15). To facilitate the simultaneous integration of the

three sections, the inlet and exit grid points for section II were coincident with the exit

grid point for section I and the inlet grid point for section III. For the 100s case with 63

grid points, the explicit POD/ROM/DD was able to accurately reproduce the full order

solution with 81 DOFs, down from 189 DOFs for the full order nozzle. For the 30s case,

there was a smaller range of shock motion so the number of grid points modeled at full

order in section II was reduced. For this case the number of evenly spaced grid points

was expanded to 250. A very accurate solution was obtained using the following domain

decomposition: section I contained 116 grid points, section II contained 9 grid points, and

section III contained 125 grid points. The density solution at the time of largest L2err is

shown in Figure 3.7. This reduced order model used 8 modes per fluid variable in sections
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I and III. Section II contained 9 grid points. The resulting reduced order model had 75

degrees of freedom, down from 750 for the full system.
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Figure 3.7 POD/ROM/DD Density Comparison with 250 Grid Points

3.5.2 Quasi-Steady Formulation with Full Order Shock Region. Next an implicit

formulation was developed for the POD/ROM/DD with a full order shock region. Domain

decomposition required a reordering of the full order solution vector U(t). Instead of

ordering the members of U(t) by fluid variables distributed spatially across the entire

nozzle, UDD(t) stacked the fluid variables across each section. Each of the three sections

was treated as an independent full order solution US1, US2, and US3, so each had its own

reduced order mapping US1 = Ψ1 · ÛS1, US2 = Ψ2 · ÛS2, and US3 = Ψ3 · ÛS3. Since section
II was modeled at full order, ÛS2 = US2 and Ψ2 was the identity mapping.

The domain decomposition reduced order mapping combines each independent sec-

tion,

UDD =




US1

US2

US3


 =




Ψ1 [0] [0]

[0] I [0]

[0] [0] Ψ3


 ·




ÛS1

US2

ÛS3


 ,
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where,

ΨDD =




Ψ1 [0] [0]

[0] I [0]

[0] [0] Ψ3


 .

The reduced order Jacobian was obtained from the full order Jacobian. The full order

Jacobian
dF (UDD)
dUDD

was approximated numerically using central differences from evaluations

of F (UDD) about UDD ± ∆U . This non-Galerkin implicit method improves numerical

efficiency because the reduced order Jacobian is more easily inverted . The Jacobian update

is still accomplished at full order; however, this update does not need to be accomplished

for every Newton iteration. Once the Newton iterations provide a solution sufficiently

close, repeated iteration on the same Jacobian will converge quickly within the desired

error threshold.

3.5.3 Quasi-Steady Formulation with Reduced Order Shock Region. Attempts

were made to obtain a solution using a POD/ROM for section II generated from 25 snap-

shots of steady state flow solutions at values of γ from 1.4 → 1.35 (shown in Figure 3.5).

As γ was dropped from 1.4, Newton iterations introduced a non-physical discontinuity at

the intersection between sections II and III. Clearly a method to enforce smoothness at

this intersection was required to use a POD/ROM for section II with the implicit solver.

This was accomplished using the constrained optimization technique outlined in

Chapter 2. First, the domains in sections II and III were allowed to overlap by one,

two or three grid points. Initially, it seemed increasing the amount of overlap would im-

prove the solution because additional grid points contained information to equate first and

second derivatives in the overlap region. For this reason, three grid points of overlap were

used to generate the results that will be shown. However, the number of grid points in the

overlap region (from one to three) had no effect on the solution. The same results could

have been achieved with only one grid point of overlap. Very large amounts of overlap were

not used because this would have polluted the modal representation with flow dynamics

from the adjacent domain and nullified the domain decomposition.
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An L1 constraint was introduced to enforce smoothness at the intersection of sections

II and III. A vector T with the same dimensions of UDD was defined such that UT
DDT = 0

when the flow variables for the overlapping sections had the same value. This was achieved

by placing a 1 or −1 in each fluid variable location corresponding to the overlap in sections

II and III respectively. Zeros were placed everywhere else in T . The dot product of T

with UDD resulted in cancellation of the fluid variables when the overlapping portion of

the solution domain was equivalent. If the overlapping fluid variables were not identical,

the dot product produced a small scalar residual.

A Lagrange multiplier λ was used to formulate the constrained optimization,

y =


 UDD

λ




G(y) =


 F (UDD) + λT

UTDDT


 .

The modified Jacobian was,

dG(y)

dy
=




dF (xDD)
dxDD

T

T T 0


 .

The reduced order mapping was modified to include the reduced order mapping US2 =

Ψ2 · ÛS2 and the Lagrange multiplier,

y =




US1

US2

US3

λ



=




Ψ1 [0] [0] 0

[0] Ψ2 [0] 0

[0] [0] Ψ3 0

0 0 0 1



·




x̂S1

x̂S2

x̂S3

λ



, (3.6)

which was rewritten,

y = Ψλ · ŷ .
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The constrained reduced order Jacobian was obtained from the full order constrained

Jacobian,

dĜ(ŷ)

dŷ
=
(
ΨT
λΨλ

)−1
ΨT
λ

dG(y)

dy
Ψλ .

3.6 Quasi-Steady Results
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Figure 3.8 Shock Motion with Varying γ

The implicit methods were successfully used to obtain results for the POD/ROM/DD

with shock regions modeled at both full order and with POD/ROM. The 250 grid point

full order nozzle problem was decomposed into three sections: section I had 117 grid

points, section II had 15 grid points plus 2 coincident grid points for a total of 17, and

section III had 118 grid points. Two POD/ROM/DD models were analyzed. The first

modeled section II at full order with 17 grid points. Section I used one mode per fluid

variable, and section III used one mode for both density and momentum, and two modes

for energy. The resulting POD/ROM/DD had 58 DOFs, down from the original 750. The

second POD/ROM/DD used a POD/ROM for section II generated from the 25 snapshots

of steady state flow solutions at values of gamma from 1.4 → 1.35 described earlier. An

additional four grid points were added to section II as overlap with section III. The

POD/ROMs for sections I and III were identical to that described above for the first case.
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Upon examination of the eigenvalues associated with the modes for section II, significant

energy (order 10−3) was found in the 16th mode. Energy in the 17th mode was order

10−7. Very good results were obtained using 16 modes per fluid variable. The resulting

POD/ROM/DD had 55 DOFs, 7 for sections I and III, and 48 for section II.

Steady state solutions from both POD/ROM/DDs were obtained as γ was varied

from 1.4 down to 1.37. Note that the POD/ROMs for sections I and III were trained at

γ = 1.4. The density results shown in Figure 3.8 show that both POD/ROM/DD’s tracked

the quasi-steady shock motion very closely. The POD/ROM/DD with the full order section
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Figure 3.9 POD/ROM/DD Shock Location in the Nozzle

II misplaced the shock location one grid point down stream as γ was reduced, while the

POD/ROM/DD with a POD/ROM for section II tracked shock location nearly exactly

to the full order result. This is depicted in Figure 3.9. Both POD/ROM/DDs accurately

recreated the flow solution before and after the shock. Errors in density after the shock for

both POD/ROM/DDs are depicted in Figure 3.10.b. Notice that errors grew as gamma

was steadily decreased, which occurred because the POD/ROMs for sections I and III were

trained at γ = 1.4. Even with the small error growth, the error in density was less than

1% for either the L2 or the maximum norms.
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Figure 3.10 POD/ROM/DD Density Error

Errors in density before the shock for both POD/ROM/DDs are depicted in Fig-

ure 3.10.a. Notice that error growth was greater for this portion of the nozzle. Also

notice that both POD/ROM/DDs exhibited the same performance. For both models, a

small discontinuity formed at the intersection of sections I and II as gamma was steadily

decreased. This discontinuity slowly grew as γ was decreased further. The growing discon-

tinuity is reflected in the larger maximum error norm in Figure 3.10.b. The constrained

implicit formulation did not include overlap between sections I and II, which allowed for

the non-physical discontinuity to occur.

3.7 Conclusions

The ability of POD/ROM to replicate the shocked flow solution from which it was

formed was demonstrated. It was shown that POD/ROM can accurately recreate a flow

solution with strong shocks, given that the appropriate data is present in the matrix of

snapshots. If the shock was reasonably stationary, POD/ROM could accurately model

the flow field with as few as three modes per fluid variable. It was also shown that the

POD/ROM could very accurately reproduce flow dynamics involving a transition from

smooth to shocked flow, including a shock with significant movement. Recreating this case

required many more modes for accurate representation.
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In high-speed design analysis, shock movement might force the POD/ROM to pro-

duce dynamics beyond the condition under which it was trained. Even small excursions

of the shock location beyond the data result in failure of the POD/ROM to arrive at a

solution. In these cases the POD/ROM goes unstable attempting to form the shock. The

desire to use POD/ROM in design analysis of shocked flows motivates the domain de-

composition shock capturing approach. The accuracy and order reduction of the domain

decomposition approach was demonstrated for a quasi 1-D nozzle flow. The non-shocked

regions of this flow field were modeled using POD/ROM. These POD/ROMs were trained

using γ = 1.4. The shocked region of the flow field was modeled both by POD/ROM

and by the full order CFD model adapted for this region. The accuracy of both models

was examined for quasi-steady shock motion as γ was varied from 1.4→ 1.37. Both cases

produced accurate flow fields and shock motion. Flow field errors were less than 2%, and

the shock movement was tracked within one grid point of the true shock location.

Both methods exhibited similar order reduction. The full order solution had 750

DOFs, the model with a full order shock region had 58 DOFs, and the model with a

POD/ROM for the shock region had 55 DOFs. Sixteen modes per fluid variable were

required for an accurate POD/ROM of the shocked region, resulting in the insignificant

additional order reduction relative to the POD/ROM/DD with a full order shock region.

Because of the computational expense of generating snapshots and the large number of

modes required, there are no advantages motivating POD/ROM for the shocked region

for this 1-D case. However, in 2-D and 3-D cases there might be a significant order

reduction gained by constructing a POD/ROM for the regions containing shocks. In such

situations, the computational expense of obtaining snapshots could be reduced by using

a POD/ROM/DD with full order shock regions to generate snapshots, instead of the full

order model. This is explored more fully in the next chapter.
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IV. Analysis of a 2-D Blunt Body Problem

4.1 Introduction

The 1-D analysis described in the previous chapter used the domain decomposition

technique to accurately track a moving strong shock wave with POD/ROM. This chapter

considers the application of the POD/ROM/DD approach to steady analysis of a 2-D

problem. High-speed flow over a 2-D blunt nosed cone is the model problem for this study.

Changes in inlet Mach number and angle of attack (AoA) results in quasi-steady motion

of a strong shock wave off the nose of the blunt body. The POD/ROM/DD technique is

applied to study the blunt body problem across this parameter space. The accuracy, order

reduction, and computational savings are quantified.

4.2 2-D Blunt Body Problem

This analysis was conducted on an inviscid 2-D flow field over a blunt body. The

structured finite volume numerical flow solver described in Chapter 2 was used as the

full system model. The blunt body geometry was a 15 degree wedge with a circular

nose, generated using two line segments and a circumscribed circle of radius 1.08501. The

top surface was a line segment starting at x = 0, y = 1 and terminating at x = 3,

y = 2.0919107. Similarly, the bottom surface was a line segment starting at x = 0, y = −1
and terminating at the x = 3, y = −2.0919107. A structured grid using 53 nodes along the

solid surface and 35 nodes extending to the free stream was generated as shown in Figure

4.1.

4.3 Domain Decomposition

The solution domain in Figure 5.1 was broken into sections to facilitate the use of

POD with strong moving shocks. Isolation of the standing strong bow shock was the

goal of the domain decomposition. Changes in free-stream Mach and angle of attack

produced quasi-steady shock motion. Domain decomposition was used to isolate a region

of the computational mesh that contained the shock. A range of quasi-steady shock motion

between Mach 2.7 and 4.2 with AoA between −5 and 5 degrees was chosen as the parameter
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Figure 4.1 Blunt Body Geometry (non-dimensional)

space for this analysis. Steady state outcomes of the full system model showed that quasi-

steady shock motion for this parameter space would always fall within the steady state

shock locations for Mach 2.5 AoA 0 degrees, and Mach 5 AoA 0 degrees. Steady state

pressure contours for these cases are shown in Figure 4.2.

A simple algorithm was used to search for the shock locations and allocate cells to

sections. Section I contained the region of the flow field prior to the shock at Mach 2.5 and

AoA 0 degrees, section III contained the region of the flow field behind the shock at Mach

5 and AoA 0 degrees, and section II comprised the remainder of the computational mesh.

Section II was the region containing the shock motion. The allocation of cell centers to

sections is shown in Figure 4.3. The computational mesh contained 1768 cell centers. The

domain decompositions allocated 562 cell centers to section I, 408 cell centers to section II,

and 798 cell centers to section III. For the regions of the flow field not containing a shock,
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Figure 4.2 Steady State for Mach 5 (Left) and Mach 2.5 (Right)

a POD ROM was generated using the methods developed for low-speed flow problems.

Both full order and reduced order approaches for section II were studied.

4.4 Steady Formulation

The reduced order mapping from equation (2.12) is reproduced below. The reduced

order vector Û represents the deviations of the full order flow field from the base flow U 0,

therefore the base flow must be added back when re-constituting the flow field.

U(t) = U0 +ΨÛ(t)

The base flow was slug flow at the free stream conditions. An additional complication was

introduced because the parameter space required changes in free stream values. Consider a
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Figure 4.3 Domain Decomposition

steady state flow field for some value of Mach number and angle attack U IC , and the base

flow for the same inlet conditions U IC
0 . Now consider time integrating the POD/ROM/DD

to steady state starting at U IC , but for a different value of Mach number and angle of

attack and a new corresponding base flow U run
0 . Equation (2.12) was modified as follows

to accommodate this complication.

U(t)− (U IC − U IC0 ) = U run0 +ΨÛ(t) (4.1)

∆UIC = (U IC − U IC0 )

U transIC = ∆U IC + U run0
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This is equivalent to,

U(t) = U transIC +ΨÛ(t) . (4.2)

The new initial condition U trans
IC extracts the form of the initial flow field by subtracting

off the base flow. This functional form (∆U IC) is translated to the new inflow conditions

by adding the new base flow for the inflow conditions of interest.

Notice that equation (2.12) is returned when U IC = U0 in equation (4.1). The POD

modes spatially compensate for the difference between the initial flow field U trans
IC and the

flow field at the time of interest U(t). If the initial condition is very near to steady state,

then there is very little modal contribution to the reduced order solution. If the initial flow

field is very far from steady state, a great deal of modal participation is required to define

the flow field. This phenomenon appeared to be a uniqueness problem, since changing

initial conditions could produce very different steady-state solutions (depending on the

adequacy of the modes). However, the initial condition was part of the dynamics for the

reduced order integration since U trans
IC + ΨÛ(t) in equation (4.2) was the value for U(t)

used in the flux calculation R(U(t)). Therefore steady-state solutions varied with initial

condition because changing the initial condition fundamentally changed the problem.

4.4.1 Domain Decomposition Solver. Since the domain was divided into three

sections, the steady formulation for the POD/ROM/DD involved solving three smaller

fluid problems that were linked by internal boundaries. External boundaries were handled

with ghost cells as described earlier. Ghost cells for internal boundaries were filled with

the corresponding values from the adjacent domain using data from the most recent time

iteration. No domain overlap was necessary for the time integration implementation of

the POD/ROM/DD with a full order shock region. Each of the three sections used its

own vector of conserved flow field variables US1(t), US2(t), and US3(t). After each time

integration step the entire flow field was re-constituted by combining and reordering the

data from each section U(t) = US1(t)
⋃
US2(t)

⋃
US3(t).

4-5



4.5 Results

This section presents results for cases where the shock region is either modeled at

full order, or treated with a POD/ROM. Additional formulation is included in the case

using POD/ROM for the shock region to describe the use of constrained optimization.

4.5.1 Full Order Shock Region Results. A steady formulation involved explicit

time integration and local time stepping for the full order shock region. The POD/ROM

in section I was solved using a single time integration step to produce slug flow at the

corresponding inlet conditions. The POD/ROM in section III was solved using the chord

method. No domain overlap was used for this implementation.

Section I was solved first to provide the proper inlet conditions for section II. As the

full order section II was time integrated, the POD/ROM for section III was periodically

updated every 30 iterations using inlet boundary data from the exit of section II at the

latest iteration. The value of 30 was determined through trail and error to provide the best

convergence performance. This periodic update was necessary because a good portion of

the internal boundary between sections II and III was subsonic. Information from section

III had to flow across the boundary into section II to obtain the proper steady-state

solution.

The POD/ROM/DD was trained using steady-state flow field solutions. Steady

state solutions were obtained from the full order solver at AoAs of −2, −1, 0, 1, and 2

degrees, and Mach numbers of 2.5, 2.6, and 2.7. All combinations of these parameters

produced 15 snapshots. For all snapshots, the base flow was slug flow at the corresponding

inlet conditions. The POD/ROM/DD for steady analysis was obtained from this set of

snapshots. The POD/ROM for section I used one Mode Per Fluid Variable (MPFV), while

the POD/ROM for section III used two MPFV. With section II remaining at full order,

the POD/ROM/DD totaled 1644 DOFs. This was a 4.3 to 1 reduction in DOFs relative to

the full order problem. Steady state flow fields were generated for a variety of parameter

values. The initial condition for the steady analysis was the steady-state flow field at Mach

2.7 and AoA 2 degrees, translated to the new inlet parameters.
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The numerical efficiency of this implementation was evaluated by comparing wall-

clock time for comparable runs of both the full system, and the POD/ROM/DD with two

MPFV. A realistic expectation for computational improvement comes from the reduction

in DOFs. For this problem, the reduction in DOFs was 4.3 to 1. A similar improvement in

computational efficiency can be expected from a reasonable implementation of the reduced

order model. Two bench-marking cases were considered. The first involved steady-state

solution for inflow parameters of Mach 2.8 and AoA 0 degrees starting from steady-state

flow at Mach 2.7 and AoA 2 degrees. The full order solver reached the convergence thresh-

old after 1300 iterations of the full order solver. Wall-clock time was 37.73 seconds to

obtain the full order solution. The computer specifications are provided in Table 4.1 The

Table 4.1 PC Specifications
Processor 450 MHz Pentium 3

Operating System Windows 2000

Memory 128M

Fortran Compiler Visual Fortran v6.1

Optimizations Optimized for speed

POD/ROM/DD converged in 900 iterations of the the full order section II in 8.51 sec-

onds. The computational improvement for this case was 4.43 to 1. The POD/ROM/DD

converged to steady state in fewer total iterations than the full order solver due to the

chord method implementation in section III. The POD/ROM in section III converged to

steady state very quickly and did not require any Jacobian updates throughout the solu-

tion procedure. This accounts for the wall-clock time savings being slightly better than

expected when considering the reduction in DOFs. A second bench-marking case extended

the POD/ROM/DD far outside the training window. This case required the computation

of a steady-state solution for inflow parameters of Mach 4.2 and AoA 5 degrees starting

from steady-state flow at Mach 2.7 and AoA 2 degrees. The full order solver reached the

convergence threshold after 1900 iterations of the full order solver. 53.22 seconds wall-clock

time was necessary to obtain the full order solution. The POD/ROM/DD converged in

1100 iterations of the the full order section II in 11.26 seconds. The computational im-

provement for this case was 4.726 to 1. Again the improvement in convergence history due

to the POD/ROM in section III accounted for the better than expected time performance.
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Figure 4.4 CP Percent Error on Blunt Body

The accuracy was examined across a parameter space well beyond that for which

the POD/ROM in section III was trained. Errors in CP by index number on the body for

a range of Mach numbers at AoA 1 degree are shown in Figure 4.4.a. The POD/ROM

in section III was only trained to Mach 2.7, but CP errors on most of the body were

small well beyond this Mach number. Between Mach 2.7 and 4.2 the shock moves 5 cells

closer to the body. The flow between the nose and the shock is subsonic, requiring the

sharing of information across the internal boundary between sections II and III to obtain

a solution.The modal information collected during the training period was less adequate

at higher Mach numbers. Notice in Figure 4.4.a that as Mach number increased, the
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POD/ROM/DD has difficulty generating the proper pressures on the aft portions of the

body. This performance was slightly improved by adding more modes. The same plot for

a POD/ROM/DD with 5 MPFV instead of 2 is shown in Figure 4.4.b. At an AoA of 5

degrees and using 2 MPFV, the POD/ROM/DD shows a similar degradation in accuracy

with Mach number. The CP error percentages on the body for this case is shown in Figure

4.4.c. The large error spike is due to a single cell error in the location of the sonic transition

point on the suction surface. This case extends the POD/ROM/DD beyond its trained

values in both Mach number and AoA. The addition of more modes improves the aft body

errors on the lower surface, but introduced new errors on the suction surface after sonic

transition. This is shown in Figure 4.4.d. In addition, the POD/ROM/DD with 5 MPFV

became unstable at Mach 4.2 and AoA 5 degrees and was unable to produce a steady-state

solution.
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Figure 4.5 CL from Steady Analysis

The POD/ROM/DD performed well at parameter values within or near the limits of

the training. Errors were often less than 1% for AoAs less or equal to 2 degrees and Mach

numbers between 2.5 and 2.7. The errors were larger the farther POD/ROM/DD was

removed from the training window in the parameter space. To illustrate this, steady-state

solutions from the 2 MPFV POD/ROM/DD were obtained across the parameter space.

The steady-state pressure distributions were integrated across the body surface to produce

CL. The POD/ROM/DD lift coefficients are shown in Figure 4.5.a. For comparison, lift

coefficients from the full order solver are shown in Figure 4.5.b. The difference between
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Figure 4.6 Error in CL for Steady Analysis

these results and the results from the full order solver are shown in Figure 4.6.a. Note

that the errors grew as the parameter space was extended beyond the training window

in both Mach and AoA. This error growth was reduced by adding more modes from the

same training window. The same CL error plot for a 5 MPFV POD/ROM/DD is shown

in Figure 4.6.b.

4.5.2 Reduced Order Shock Region Results. Next a steady implementation was

developed for the POD/ROM/DD with a reduced order shock region. This implementation

involved coupling the POD/ROMs for sections II and III into a single chord method solver.

Enforcing smoothness on the boundary for solutions of adjoining POD/ROM regions re-

quired overlapping the domains by three cells to mimic the 1-D implementation from

chapter 3. Smoothness in the overlap regions was enforced by using Lagrange constrained

optimization. In addition, any substantial change in the shock location and strength within

section II tended to destabilize the reduced order Newton iterations. As a result, steady

state solutions over a range of Mach numbers had to be obtained by incrementing the shock

motion. This required many solutions to the reduced order problem to move the shock

any significant distance. Attempts to use small incremental steps in inlet Mach number to

move the shock in a quasi-steady fashion to its appropriate location were unsuccessful. To

increment the shock motion in a physically meaningful way, a time accurate chord method

solver was implemented. The solution strategy was to time march the implicit solver un-
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til the shock reached its steady state location for the inlet Mach number, and then use

the steady solver to jump to the steady state solution. This implementation is developed

below.

The domain decomposition reduced order mapping combined sections II and III as

follows.

UDD =


 US2

US3


 =


 ΨS2 [0]

[0] ΨS3


 ·


 ÛS2

ÛS3


 (4.3)

ΨDD =


 ΨS2 [0]

[0] ΨS3


 (4.4)

The outputs of the flux calculations RS2(US2) and RS3(US3) from the full system were

stacked by section, and the resulting vector was denoted as R(UDD). The implicit time

accurate solution for the Euler equations was obtained using F (UDD) defined in equation

(2.19)

F (UDD) = UDD − U initDD −∆tR(UDD)

The chord method implementation described in Chapter 2 was applied to obtain the so-

lution of F (UDD) = 0. Once the shock motion ended, the chord method solution to

R(UDD) = 0 could be solved to obtain the steady state solution.

The use of Lagrange constrained optimization to enforce smoothness in the over-

lapping regions of the two domains is developed below for the time accurate case. The

Jacobian for the domain decomposed system was block diagonal,

dF (UDD)

dUDD
=




dFS2(US2
)

dUS2

[0]

[0]
dFS3(US3

)
dUS3


 . (4.5)

Since the two solution domains were decoupled, the Lagrange constraint ensured smooth-

ness between the domains by forcing the overlapping portion of both domains to have the

same solution. The domains in Sections II and III were overlapped by a three cells. An

L1 constraint was introduced to enforce smoothness at the intersection of Sections II and

III. A vector T with the same dimensions of UDD was defined such that UT
DDT = 0 when

the flow variables for the overlapping sections had the same value. This was achieved by
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placing a 1 or −1 in each fluid variable location corresponding to the overlap in Sections

II and III respectively. Zeros were placed everywhere else in T . The dot product of T

with UDD resulted in cancellation of the fluid variables when the overlapping portion of

the solution domain was equivalent. If the overlapping fluid variables were not identical,

the dot product produced a small scalar residual.

A Lagrange multiplier λ was used to formulate the following constrained optimiza-

tion.

y =


 UDD

λ


 (4.6)

G(y) =


 F (UDD) + λT

UTDD · T


 (4.7)

The modified Jacobian was obtained as follows,

dG(y)

dy
=




dF (UDD)
dUDD

T

T T 0


 . (4.8)

The reduced order mapping was modified to include the Lagrange multiplier,

y =




US2

US3

λ


 =




Ψ2 [0] 0

[0] Ψ3 0

0 0 1







ÛS2

ÛS3

λ


 . (4.9)

The reduced order Jacobian can be quickly identified using the full system as originally

introduces in equation (2.32),

dĜ(ŷ)

dŷ
= (ΨT

λΨλ)
−1ΨT

λ

dG(y))

dŷ
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where
dG(y))

dŷ is given by the following,

dG(y))

dŷ
=




dF (UDD))

dÛDD

T

T TΨDD 0


 (4.10)

This result can be obtained directly from equation (2.20) using
dR(UDD)

dÛDD

for the steady

state solver.
dF (UDD)

dÛDD
= ΨDD −∆t

dR(UDD)

dÛDD

Initial attempts to obtain solutions were made by collecting 90 steady state solutions

of the flow field evenly incremented in Mach number from Mach 2.7 to Mach 4.5. The angle

of attack was zero degrees for all cases considered in this section. The shock traversed 6

cell centers over this range of Mach number, and the shock strength increases 38% along

the stagnation line. The POD/ROM/DD test case involved obtaining the steady state

solution for Mach 2.7 from an initial condition based on the steady state solution at Mach

3.65 translated to Mach 2.7 by shifting the base flow as described earlier. This created an

initial condition with the shock location and strength of the Mach 3.65 solution, but the

free stream conditions of Mach 2.7. Obtaining this solution required the POD/ROM/DD

to move the bow shock 5 cell centers forward of the nose, and decrease the shock strength

by 20%. No combination of modes from the set of 90 snapshots could be identified that

resulted in shock motion. Instead, the shock tended to smear, grow or decline in strength,

and eventually destabilize the solver.

A second attempt was made using 250 snapshots collected at even intervals from

the full order time integration for the test case described above. From these snapshots

a POD/ROM/DD was constructed using 10 MPFV in section II and 4 MPFV in section

III. The flow field in section I remained constant at free stream conditions for this case.

Total degrees of freedom for the POD/ROM/DD were 56, down from 7072 for the full order

model for a 126 to 1 reduction in DOFs. This POD/ROM/DD was able to accurately move

the shock and reach a steady state solution for Mach 2.7. The 10 density modes for the

shock region are shown in Figure 4.7.a. This figure shows a cross section of the mode taken

along the stagnation line. The stagnation line contained the strongest portion of the shock
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Figure 4.7 Density Modes for Shock Region

and the greatest range of shock motion in index space. The x-axis is the cell center index

number across the stagnation line from the nose (index number 1) to the free stream inlet

(index number 34). Section II consisted of index 14 to 21. The overlap region extended

section II down to index 12, but this portion is not reflected in the figure. For comparison,

the 10 density modes which were unable to produce a solution for the previous case are

shown in Figure 4.7.b. Notice that the modes from time integration differ in skewness

and magnitude from those obtained by snapshots of steady state solutions. Both sets of

modes did exhibit a similar increase in spatial frequency with mode number, but this was

the only consistent feature between them. The physical motion of the shock contained in

the snapshots from time integration was reflected in the modes, and a seemingly complete

collection of steady state solutions for the same range of shock motion was unable to

produce the same modes. Unlike results for the 1-D case, the 2-D blunt body problem

involved a large change in shock strength in addition to shock motion. These additional

dynamics make POD training more problematic. The steady state values of CP at Mach

2.7 for both the POD/ROM/DD with the reduced order shock region and the full order

model are shown in Figure 4.8. Errors are on the order of 10%, which are slightly larger

than errors observed for the full order shock region case.
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The robustness of the POD/ROM/DD was studied by increasing the desired inlet

Mach number from the training value of Mach 2.7. The POD/ROM/DD was able to obtain

accurate steady state solutions for a range of inlet Mach numbers between 2.7 and 3.0.

Mach numbers higher that 3.0 drove the solver unstable. At these greater Mach numbers

the snapshots from the time integration of shock motion at Mach 2.7 did not contain

the proper information to form a shock of the proper strength at Mach 3.0. This drove

the solver unstable when searching for a steady state shock even though the modes were

adequate to move a transient shock over this range of Mach numbers. Both shock motion

and shock strength must be adequately represented in the modes for POD/ROM to work

in the shock region.

Index Across Body

C
P

on
b

od
y

0 10 20 30 40 50
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

POD/ROM
Full Order

Figure 4.8 CP Error for POD/ROM/DD

The computational effort to produce the Mach 2.7 steady solution for the test case

did not compare well with the full-order, explicit solver with local time stepping. The

POD/ROM/DD for this case required the time accurate method to move the shock to its

final position and the steady state chord method to obtain the steady state solution. A large

increase in time step size was achieved with the time accurate chord method, requiring only
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27 time steps to move the shock to its steady state location for an average CFL number of

about 50. The full order solver required a CFL less than 1 for stability. However, aided by

the supersonic flow conditions and the local time stepping, the full order solver converged

to the steady state in only 1300 iterations. This required 1300 order N function calls. In

comparison, the POD/ROM/DD converged in 27 time steps plus 1 additional step to jump

to steady state. But each of these steps required an update to the Jacobian for section II.

Section II had 40 DOFs, and the numerical Jacobian calculation required 2 function calls

per DOF. The total order N function calls for the POD/ROM/DD to reach steady state

was 2240. Wall clock time on the PC described in Table 4.1 was 118.42 seconds to obtain

the POD/ROM/DD solution, while the wall clock time to obtain the full order solution

was only 41.09 seconds. For comparison, the wall clock time to obtain the same solution

from the POD/ROM/DD with the full order section II was 14.56 seconds.

4.6 Conclusions

A very accurate and efficient reduced order model was generated for the 2-D blunt

body problem using POD/ROM/DD to isolate the region of the flow field containing the

shock motion. This region was solved at full order, while the remainder of the domain

was treated with POD/ROM. The resulting ROM had a 4.3 to 1 reduction in DOFs and

a computational improvement of 4.7 to 1. The POD/ROM/DD provided very accurate

results over a parameter space of inlet Mach number and AoA that extended far beyond

the parameter space used for POD training.

In contrast, the use of POD/ROM/DD with a reduced order shock region was not

an advantageous approach for the 2D blunt body problem. POD training for the shock

region was more problematic than initially expected. This was due to the great increase

in shock strength accompanying motion of the bow shock off the blunt body. Although a

set of modes to accommodate these harsh dynamics was identified, they did not produce

a particulary accurate or robust reduced order model. The poor computational perfor-

mance of the technique was not due to POD. Rather, the use of Newton’s iterations in the

presence of a moving discontinuity required many incremental solution steps to maintain

stability. These incremental steps were more computationally expensive than the full or-
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der integration. Full order explicit time integration for shock region yielded much better

results than the implicit reduced order calculations for this problem.

However, POD/ROM/DD with a reduced order shock region could prove useful

for unsteady cases. Use of implicit time marching (or even explicit integration) for the

POD/ROM of the moving shock could provide a computational advantage in unsteady

cases. For example, an unsteady transonic moving shock would occur in a largely subsonic

solution domain. Subsonic cases would take longer to converge for the full order solver,

and the time accurate integration would preclude use of local time stepping. Viscous cases

requiring very fine numerical meshes would further reduce the full order solvers efficiency

by decreasing the allowed time step for stability while increasing the problem order. This

would magnify the CFL improvement seen in this POD/ROM/DD implementation. In ad-

dition, POD training for the shock region might be less problematic for periodic unsteady

cases. Snapshots from a single cycle of oscillatory behavior could potentially apply to a

wider parameter space. The unsteady transonic case is explored in the next chapter.
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V. Analysis of a Transonic Aeroelastic Problem

5.1 Introduction

In this chapter, the domain decomposition approach with POD/ROM is applied to

an aeroelastic panel in cross-flow. A nonlinear coupling of the 2-D Euler equations and

the von Kármán equation is used to simulate the dynamics of flow over the flexible panel,

producing transonic LCO in the presence of certain panel parameters and free stream

conditions. In the transonic regime, LCO involves a transonic shock that traverses the

panel surface. Previous research (9) for this problem neglected reduced order modeling of

the transonic case because of the difficulties that moving shocks pose to POD/ROM. The

development of a POD/ROM to treat the transonic case is the subject of this chapter.

5.2 Formulation

In this section, the structural equations and fluid equations are described, and the

domain decomposition is developed. Emphasis is given to the reduced order implementa-

tion of the fluid dynamics model, which includes a development of constrained optimization

required to couple adjacent domains across internal boundaries.

5.2.1 Structural Dynamics Equations. Two-dimensional flow over a semi-infinite,

pinned panel of length L was considered. Panel dynamics were computed with von

Kármán’s large-deflection plate equation, which was placed in non-dimensional form using

aerodynamic scales L and u∞ (53) (−12 < x < 1
2):

µ

λ

∂4w

∂x4
−Nx

∂2w

∂x2
+
∂2w

∂t2
= µ

(
1

γM2
∞

− P
)
,

Nx = α

∫ 1

2

− 1

2

(
∂w

∂x

)2
dx.

Panel deflections w(x), and velocities s(x) = ẇ(x), were computed as a function of x and

t, given the values of the parameters µ, λ, and h/L, where

α =

(
6µ

λ

)(
h

L

)−2
(1− ν2).
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Two boundary conditions were enforced at the panel endpoints (x = ± 12): w = 0 and

∂2w
∂x2 = 0.

The structural dynamics equations were discretized and placed in first-order form

to facilitate numerical integration. Spatial discretization was accomplished with second-

order accurate, central differences, and the midpoint rule was used to compute the integral

in the definition of Nx. A uniform distribution of grid points was assumed. The end

conditions were explicitly accounted for by a modified central-difference formula. Excluding

the endpoint states, the discrete structural variables were collocated into arrays W and

S, and then into the structural state, Y s. The values of ( 1
γM2

∞

− P ) at panel grid points

were also collected into array P . With these definitions, the structural equations take the

first-order form

Ẏ s =


 0 LN

I 0


Y s +


 µP

0


 , (5.1)

where I is the identity matrix, and LN is a nonlinear matrix operator given by

LN ≡ −
µ

λ

δ4

δx4
+Nx

δ2

δx2
.

Here δ
δx represents central-difference, spatial discretization.

System (5.1) was integrated in time using an Euler implicit method which was first-

order accurate in time. The Euler implicit method used the value for pressure provided by

a coupled fluid model (9):


I −∆t


 0 LN

I 0



n+1


Y− Y n

s =


 µP

0


 , (5.2)

F (Y) = 0,

where Y = Y n+1
s . The nonlinearity in (5.2) was accounted for through sub-iteration. Y

was iteratively computed using the chord method with LN evaluated about an undeflected
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panel state, as represented by L0N :


I −∆t


 0 L0N

I 0




Y

ν+1 − Y
ν = −F (Yν). (5.3)

The matrix L0N was computed and LU -decomposed once at the start of the time-integration

procedure to increase the efficiency with which (5.3) was solved. The chord method con-

verged quickly for the transonic cases considered due to the small deflections of the panel

(< 2% of the panel length). Four sub-iterates applied at each time step were generally

sufficient to drive F to near machine zero.

A fine structural grid of 101 interior points (103 points including the endpoints of

the panel, where w = s = 0 was enforced) was used to discretize the panel. The large

number of structural grid points was used to reduce the effects of translating fluid values

to structural nodes.

5.2.2 Fluid Equations. Inviscid flow over an infinite flat plate was considered.

The fluid dynamical system from equation (2.7) is reproduced below,

dU(t)

dt
= R(U(t)) .

As described earlier, external boundaries were handled with ghost cells. The panel dy-

namics were enforced using a transpiration boundary condition for (− 12 < x < 1
2 , y = 0)

as described in section 2.1.

5.2.3 Grid Generation. The elastic panel model was inserted into the solid

boundary at −12 < x < 1
2 and y = 0. A square domain of dimension −23.668 < x < 23.668

and 0 < y < 24.6 was used for this research (the panel length was one non-dimensional

length unit). The large domain was intended to contain all the flow dynamics, and the

arbitrary choice of approximately 25 chord lengths in all directions mimics the domain

used by other authors for the same problem (9, 54). Extending the domain to include

all flow dynamics facilitates the use of characteristic boundary conditions for the outer

portion of the domain. The results may not be general, since the domain size impacts the
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panel response (see appendix F for an example). The structured grid is shown in Figure

5.1. It used 141 nodes along the solid surface and 116 nodes extending to the free stream.

The spacing of the grid points increased geometrically from the solid wall in the normal

direction. In the streamwise direction, the grid spacing was held constant at ∆wall = 0.0125

over the entire panel, and was increased geometrically upstream and downstream of the

panel position.
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Figure 5.1 Grid for Flow over Panel

5.2.4 Fluid-Structure Coupling. The structural system from equation (5.1) was

loosely coupled to the fluid system from equation (2.7) through the transpiration boundary

condition. The structural solver was explicitly stepped forward in time by ∆t from time

level tn to time level tn+1 using the pressure value on the panel from the fluid system. An

extrapolated panel pressure value was used to avoid time lagging errors that can arise in

this coupling scheme (54). The pressure value at time level n, P n, was used to estimate
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Pn+1 by

Pn+1ex = Pn +∆P n

∆Pn = Pn − P n−1

Pn+1ex = 2P n − P n−1. (5.4)

Pn+1ex was used to update the panel deflection and velocity Y n+1
s , which were incorporated

into the transpiration boundary condition. The fluid system was then time stepped to

update the flow field to Un+1. This sequence was repeatedly performed to integrate the

coupled system and produce time-accurate results.

The fluid system dominated the compute time required to produce solutions for the

coupled system. Time step size was limited by the stability of the flow solver, and the

number of degrees of freedom for the flow solver (64400) was far larger than the structural

model (202). As such, the focus of this research was to couple a reduced order model of

the flow field to the full-order structural model and produce an accurate aeroelastic panel

response with less computational expense.

Section I

Section II

Section III

Figure 5.2 Domain Decomposition
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5.2.5 Domain Decomposition. The solution domain was broken into sections

to facilitate the use of POD with the moving transonic shock. Isolation of the transonic

shock was the primary goal of the domain decomposition. Since the transonic shock was

always attached to the panel, the region of the flow field directly above the panel was

identified as the shock region. In addition, domain decomposition was used to improve

the computational performance when obtaining unsteady solutions from the reduced order

solver. Different time steps were employed for these different regions of the flow field to

minimize the number of solver iterations (40, 55).

The solution domain was divided into three regions to form the POD/ROM/DD.

The geometric shape of the region did not influence the solver performance, so regions

formed by the intersection of rectangles were used for simplicity. The results presented

were generated using the domain decomposition depicted in Figure 5.2. The large outer

region is denoted section I and is called the “far-field.” Section II is the middle region

whose outer boundary is defined by three line segments. These line segments are the sides

of a rectangle with corners at the (x, y) pairs (−3, 0), (−3, 4), (2.5, 4) and (2.5, 0). Section

II is called the “near-field,” and it will be solved more frequently than the far-field to

update the internal boundary shared with section III. Section III contains the flow over

the panel. Its outer boundary is a rectangle with corners at the (x, y) pairs (−0.7, 0),
(−0.7, 0.65), (0.7, 0.65) and (0.7, 0), and is the previously mentioned shock region. A small

shock forms on the upstream portion of the panel, and traverses over a large portion of

the panel’s length. This is the moving shock of interest for this analysis, and it is confined

entirely to section III. No overlap is included in this decomposition. Domain overlap will

be addressed later in the chapter. Section I contains 9300 cell centers, section II contains

4886 cell centers, and section III contains the remaining 1914 cell centers.

5.2.6 Reduced Order Modeling. Both implicit and explicit time accurate methods

were used to recast the governing equations to solve for the reduced order variables. Im-

plicit time stepping was an efficient way to handle the non-shocked regions of the domain

decomposed flow field (sections I and II). Here the dynamics were benign enough that the

reduced order Jacobian required no updates. Explicit time stepping was used for the shock
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region since the moving discontinuity in section III was too strong a nonlinearity for the

implicit scheme to capture efficiently.

5.2.7 Implicit Formulation with Overlapping Domains. Under certain conditions,

constraints had to be introduced into the reduced order solver to enforce smoothness on

the internal boundary between adjacent domains. Consider an implicit time integration

step from tn to tn+1 for a domain section whose full order and reduced order vector of

flow variables are denoted US and ÛS respectively. This domain section shares an internal

boundary with an adjacent domain section, they overlap, and the adjacent section has

already been time integrated from tn to tn+1. When ÛS is integrated to tn+1, the goal of

the boundary coupling is to match the overlapping region of US with the corresponding

portion of the adjacent domain. The implicit, time-integration algorithm can be forced to

do this using Lagrange constrained optimization. Both C1 and C2 constraint options from

Chapter 2 are considered. The time-accurate implementation for both is described below.

5.2.7.1 C1 Constraints. Referring to the function F from equation (2.19)

and the functional `(U) from equation (2.25), a series of C1 constraints were introduced

to enforce equality within a subset of the overlap region. For some number of constraints

I, a total of I vectors U over
i and Ti were required with the same dimensions as US . For

the ith constraint, U over
i contained flow values from a subset of the overlapping portion

of the adjacent domain section. The goal of the ith constraint was to force US to match

the flow values in U over
i . These flow values were collocated to the vector locations in

Uoveri that corresponded to the identical locations within the overlapping region of U S . Ti

contained a 1 in each fluid variable location corresponding to the selected fluid variables

from the adjacent domain, collocated into U over
i . Zeros were placed everywhere else in

T . The dot product of T with (US − Uoveri ) tended to zero when the flow variables in

US matched U overi . Otherwise, the dot product produced a small scalar residual. This

constraint approximated the L1 norm, or average value, of the flow variable differences in

this subset of the overlapping domain. Fluid values for U over
i could be chosen as required

to produce a reasonable solution. Each constraint could apply to any combination of the

four fluid variables, over any portion of the overlapping region.
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One Lagrange multiplier λi was used for each constraint. Lagrange constrained

optimization (51) modifies `(US) by adding each linear constraint as shown in equation

(5.6) (the n + 1 superscript on US is dropped for convenience). This new functional Q,

called the Lagrangian, whose minimizing value was obtained by finding the values of US ,

and λi such that the gradient of Q was zero.

y =




US

λ1

λ2
...

λI




(5.5)

Q(y) ≡ `(US) +

I∑

i=1

λi(US − Uoveri )T Ti (5.6)

G(y) ≡
dQ(y)

dy
= [0] (5.7)

G(y) =




F (US) +
∑i
1 λiTi

(US − Uover1 )T T1

(US − Uover2 )T T2
...

(US − UoverI )T TI




(5.8)

The reduced order mapping was modified to include the Lagrange multipliers.

y =




ΨS


 0

...





 0

...





 0

...





 0

...




[0 . . .] 1 0 0 0

[0 . . .] 0 1 0 0

[0 . . .] 0 0
. . . 0

[0 . . .] 0 0 0 1




·




ÛS

λ1

λ2
...

λI




(5.9)
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Equation (2.32) (repeated below) was used to identify the reduced order Jacobian from

the full system as follows.

dĜ(ŷ)

dŷ
= (ΨT

λΨλ)
−1ΨT

λ

dG(y))

dŷ

Where
dG(y)

dŷ =
dG(y)

dy Ψλ, which was

dG(y))

dŷ
=




dF (US)

dÛS

T1 T2 . . . TI

T T1 ΨS 0 0 . . . 0

T T2 ΨS 0 0 . . . 0
...

...
...

. . .
...

T TI ΨS 0 0 . . . 0




,

and
dF (US)

dÛS

was obtained from
dR(US)

dÛS

by using equation (2.16).

5.2.7.2 C2 Constraints. The optimization algorithm was modified to use

C2 constraints. Again, a series of constraints were considered instead of using a single

constraint for the entire overlap region as shown in equation (2.24). The ith constraint

becomes

C2i = (US − Uoveri ) · (US − Uoveri ) = 0 , (5.10)

and the Lagrangian was minimized as follows:

Q(y) = `(US) +
I∑

i=1

λi(US − Uoveri )T (US − Uoveri ) (5.11)
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G(y) =
dQ(y)

dy
= [0] (5.12)

G(y) =




F (US) + 2
∑i
1 λi(US − Uoveri )

(US − Uover1 )T (US − Uover1 )

(US − Uover2 )T (US − Uover2 )
...

(US − UoverI )T (US − UoverI )




. (5.13)

The Jacobian for the Newton iterations comes from equation (2.32), where
dG(y)

dŷ is found

to be

dG(y)

dŷ
=




dF (US)

dÛS

+ 2
∑I

i=1 λiΨ
over
i . . . 2(US − Uoveri ) . . .

...
...

...
...

2(US − Uoveri )TΨS 0 0 0
...

...
...

...



. (5.14)

The Ψover
i term is simply the matrix ΨS overwritten with zero for any mode value not

pertaining to the subset of the overlap region and the fluid variables constrained by the

ith constraint. Unfortunately, this implementation requires the Jacobian be reformed

for each Newton iteration, since
dG(y)

dŷ is now a function of the unknowns US and λi.

Even though
dF (US)

dÛS

does not need to be recomputed, the additional multiplies within the

“2(US − Uoveri )TΨS” and the “2
∑I

i=1 λiΨ
over
i ” terms result in this implementation being

less efficient.

5.3 Results

The full-order, transonic LCO behavior is described first, followed by a discussion of

the POD/ROM/DD solver implementations. Observations are made on the effectiveness

of overlap, boundary constraint types, and domain-specific time steps. The accuracy,

order reduction, and computational savings for a variety of implementations are discussed.

Finally, the robustness is explored by observing the change in solver accuracy as panel

dynamic pressure is modified.
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Figure 5.3 Panel Response with Changing Dynamic Pressure

5.3.1 Full-System Transonic LCO. Variations in panel dynamic pressure (λ)

constituted the parameter space of interest for the transonic panel analysis. Increased

values of λ correspond to decreased panel stiffness. Panel response at Mach 0.95 across

this parameter space is illustrated in Figure 5.3. For comparison, this figure contains data

obtained from the literature for the same problem (9, 56). The maximum panel deflection

amplitude at the 12 -chord point is shown for a range of λ. When λ was less than 1750, panel

stiffness was sufficient to prevent unsteady oscillatory behavior. Any initial panel deflection

and velocity eventually damped to a static deflection state, with the panel deflected either

upwards or downwards depending on the initial condition. In Figure 5.3, the two static

deflection branches are evident for λ < 1750. Values of λ above 1750 resulted in oscillatory

panel behavior with the proper initial condition, otherwise the panel deflection settled at

the downward deflected static solution. Figure 5.3 illustrates how the upper static branch

evolves into LCO, while the lower branch remains static when 1750 > λ > 2500. The

mid-chord amplitude of the upward panel deflection during LCO is about 15% lower than

other cases reported in the literature. The dissipation in the first order Roe solver provides

more damping of the high frequency panel deflections than the higher order solvers used

in the archived data. This additional damping is the primary cause of the muted panel

deflections. The muting of the upward panel deflection is not as prominent in the static
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case. Otherwise, the dynamic and static behavior of the aeroelastic model for both static

and LCO solutions from the full-system simulation are shown to be in good agreement with

results found in the literature for the same problem (56, 9). The muted panel deflections

were not a concern since the transonic moving shock was the non-linear feature for analysis.

The POD/ROM will be shown to match the full-system accurately, and a full-system model

with higher fidelity could be inserted without loss of generality.
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Figure 5.4 Moving Transonic Shock

With λ = 2500, the full-system simulation produced the transonic LCO shown in

Figures 5.4 and 5.5. A portion of the LCO cycle exhibits a moving shock (57). The panel

deflections corresponding to the portion of LCO containing a moving shock are shown in
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Figure 5.4. The plot of CP shows the shock motion progressing from subplot A to D. The

dissipation in the first-order Roe’s solver slightly smears the moving shock. A stronger

shock also develops at the end of the panel during this portion of the LCO. Because this

was a stationary shock, it did not pose a significant problem for the POD/ROM/DD.

Figure 5.5 shows the panel time history at the 3
4 -chord point. Transonic LCO was

established very quickly from a small panel deflection in free stream conditions. The

initial panel deflection was a small, downward sinusoidal panel deflection of 1× 10−3. The

W(3/4)

S
(3

/4
)

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 0.012

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

I

II

III

Time

W
(3

/4
)

25 50 75
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

III

I

II

Moving
Shock

Figure 5.5 LCO Onset

LCO was well established by 15 seconds, which was about half the period of a single

panel oscillation. This extremely rapid LCO onset makes time integration an efficient

implementation for analysis of this case. The bottom half of Figure 5.5 is a phase plot of

panel velocity and position at 34 chord. Strong nonlinearities are evident in the upswing
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of the panel (at point I), and again after the crest at points II and III on the downswing.

These appear as loops or peaks in the phase map.

5.3.2 Solver Implementation. Two cases of the POD/ROM/DD were considered.

The first case modeled the shock region at full order, the second case modeled it with

POD/ROM. The far-field (section I) and the near-field (section II) used the same ROM

for both cases. Both the far and near-fields used an implicit, time-accurate solver, and both

were modeled with POD/ROMs trained by 100 snapshots taken at evenly spaced intervals

over one complete cycle of the panel LCO. Five modes per fluid variable were adequate

for both sections, resulting in 20 DOFs in the POD/ROM for each. The far and near-field

domains were overlapped by three cells everywhere on the common boundary. Constraints

were required when the time steps were different, otherwise the near and far-field were

effectively modeled with a single domain using five DOFs per fluid variable.

Both C2 and C1 constraints were implemented on the shared boundary between the

far and near-fields. A single C2 constraint on density over the entire overlapping region was

sufficient to produce accurate results. To use C1 constraints, a careful selection of subsets

within the overlap region was required. A series of 5 subsets with one C1 constraint for each

subset, were used to couple the near and far-field domains. Density was the constrained

fluid variable. Each subset contained a vertical column of three cells, positioned on the top

portion of the internal boundary as shown in Figure 5.6. Each vertical strip is referred to

as a “staple.” The x locations for each staple were −1, −0.25, 0, 0.25 and 1. Each staple

comprised a single cell in width, and 3 cells in height to traverse the overlap region in the

vertical direction.

This research produced several insights regarding the effective use of C1 constraints.

First, the size of the subsets played a critical role in the effectiveness of the C1 constraints.

A large number of cells within the subset provided many DOFs for the optimization to

manipulate. Many DOFs in the overlap region allowed the average of the flow field error

to be zero without the overlapping flow fields matching very closely. Conversely, if the

subset was a single cell within the overlapping domain, the error between fluid values in

the overlapping cell was driven to machine zero (order 10−16).
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Figure 5.6 C1 Constraints

In addition, choosing the size of the constrained subset was complicated by the

projection into the reduced order space. The solution within the overlap region was a linear

combination of 5 spatial modes. The solver would sacrifice the validity of the solution in

the rest of the flow field to meet the constraint in the overlap region. For example, in

driving the flow error to order 10−16 for a constraint on a single cell, the flow solution in

the non-overlapping part of the domain would produce a non-physical result. The POD

modes were an approximation of the flow of order 10−6, therefore they could not support

both an order 10−16 constraint in the overlap region, and a physical flow field solution

elsewhere.

Finally, the position of each constrained subset was determined by the flow dynamics.

In general, regions of high dynamics on the boundary required some form of constraint

while regions of lower dynamics required none. The careful placement of a few localized

C1 constraints could stabilize the entire boundary. The staple size and locations depicted

in Figure 5.6 took all of these issues into consideration.

When the shock region was modeled with POD/ROM, 20 modes per fluid variable

were obtained from the set of 100 snapshots described earlier. An explicit time accurate

solver was used for the shock region. No overlap was required between the near-field and
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the shock region. An attempt to introduce one cell of overlap everywhere on the common

boundary produced an instability in the full system. The location of an internal boundary

in a region of strong nonlinear flow behavior can cause solver instabilities (41). A wide

variety of C1 constraint combinations were tried. While some combinations stabilized the

overlapping boundary between the near-field and shock region, none produced a particu-

larly accurate flow field. The number of constraints was limited by the number of modes

used per fluid variable. When more constraints were used, the reduced order Jacobian was

not invertible.

5.3.3 Accuracy, Order Reduction and Compute Time. The domain sizes and the

POD/ROMs for the near and far-field were not varied. As a result, efficiency was only

affected by the number of domain updates for the near and far-field, the time-step size for

the shock region, and the type of constraint. Each solver is referred to by these key values

for convenience. For example, consider the POD/ROM/DD with a CFL of 0.9 in the full-

order shock region, the near-field domain updated every 40 shock region time steps, and

the far-field domain updated every 80 time steps. The CFL of 0.9 yielded a time step size

of 4.6455−3 (non-dimensional time units), and the near and far-field were updated every

0.186 (which is 40 × 4.6455−3) and 0.37 (which is 80 × 4.6455−3) respectively. This was

denoted as the full-case 0.9/0.186/0.37 model. When the full-order shock region is replaced

by a POD/ROM with CFL of 2.5, the CFL of 2.5 yielded a time step size of 1.29−2, and

the near and far-field were updated every 0.52 (which is 40 × 1.29−2) and 1.04 (which is

80× 1.29−2) respectively. This POD/ROM/DD is denoted as the POD-case 2.5/0.52/1.04

model. Both the full-case 0.9/0.186/0.37 model and the POD-case 2.5/0.52/1.04 model

use the same POD basis for the near and far-field domains.

The panel LCO from full-case 0.9/1.48/2.96 and POD-case 2.5/2.06/4.13 models are

compared at the 1
2 -chord position and the 3

4 -chord position in Figure 5.7. The use of ei-

ther C1 or C2 constraints provided similar accuracy. The moving shock was replicated

accurately within the shock region for both models. Regional time-stepping over a range

of near-field updates from 1
50 to 1

12 of one LCO period yielded similar accuracy. Mod-

els discussed in this section generally used larger time steps to improve computational
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Figure 5.7 Modeled Panel Response

performance. The CFL improvement to 2.5 was the largest allowed for stability of the

POD/ROM in the shock region. Much larger CFL increases with the sub-space projection

method have been reported in the literature (9, 21), however these cases did not involve

a moving shock. This limitation in CFL improvement is consistent with the difficulties

seen for the blunt body application in the last chapter. Similar limitations were also en-

countered when time integrating the transient flow field for the 1-D quasi-nozzle flow in

Chapter 3.

While both models produced panel responses with similar accuracy, the full-case

implementation produced results with less computational cost. The results of several runs

are shown in Table 5.1. The full system solver required 358.08 seconds (wall-clock time)

to compute 25 non-dimensional seconds on the Compaq workstation described in Table

5.2. This modeled one cycle of the panel LCO. In contrast, the POD-case 2.5/2.06/4.13
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Table 5.1 Computational Costs
Case Wall Clock Time Constraint

Full System 358.08 N/A

Full-case 161.51 C1

0.9/0.185/0.37

Full-case 196.10 C2

0.9/0.185/0.37

Full-case 128.96 C1

0.9/0.74/1.48

Full-case 123.03 C1

0.9/1.48/2.96

Full-case 136.43 C2

0.9/1.48/2.96

POD-case 142.46 C1

2.5/0.515/1.03

POD-case 133.15 C1

2.5/2.06/4.13

required 133.15 seconds, while the full-case 0.9/1.48/2.96 required 128.96 seconds. The

full-order solver was more efficient in the shock region than the explicit time integration

of POD/ROM. The CFL increase to 2.5 was not large enough to compensate for this

inefficiency.

Table 5.2 Work Station Specifications
Processor 500MHz Alpha

Cache 4M

Operating System Digital UNIX v4.0G

Memory 512M

Fortran Compiler Digital Fortran 90 Compiler v5.2

Optimizations -O

The use of C1 constraints approached the efficiency of C2 constraints when the

number of far-field updates was reduced. C2 constraints required additional multiplies to

update the Jacobian for every Newton iterate. For example, the full-case 0.9/0.185/0.37

model required 67 far-field updates. The C2 constraints were 21.4% less efficient for this

case. When the number of far-field updates was reduced to 8 for the full-case 0.9/1.48/2.96

model, the C2 constraint case was only 5.79% less efficient. The additional multiplies with

C2 constraints were offset by a reduction in DOFs (5 C1 constraints versus only one C2
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constraint), and the C2 constraints only required two Newton iterations in comparison to

four with C1 constraints.

The full system had 64400 DOFs, the full-case models had 7701 DOFs (including 5

C1 constraints), and the POD-case models had 125 DOFs. The 88% DOF reduction for

the full-case models resulted in a 66% reduction in computational cost with this solver

implementation. The repeated use of the full-order function call in the Newton iterations

prevented the cost reduction from reaching 88%. The additional reduction in DOFs for the

POD-case models did not result in additional cost savings for this solver implementation.

While the explicit integration scheme demonstrated the existence and adequacy of the POD

modes for capturing a moving shock, a Galerkin-type approach is motivated to realize

a computational savings in proportion to the reduction in DOFs. Extrapolated to 3-

D, an Euler solver of similar fidelity in all three dimensions would yield approximately

5, 300, 000 DOFs. A similar domain decomposition would produce full-case models with

approximately 335, 000 DOFs. This would be a 93% reduction in DOFs for the full-case

models, slightly better than the 88% reduction in DOFs for the 2-D implementation.

Similarly, a slightly better than 66% reduction in computational cost could be expected

from the full-case implementation in 3-D.

5.3.4 Robustness. The panel phase plot in Figure 5.8 demonstrates the ability

of POD/ROM/DD to capture nonlinear behavior at λ = 2500, which was the value used

for POD training. When POD is used in the shock region, the flow field near the panel

is constrained by the projection into the reduced order space. The flow field does not

damp high-frequency structural responses in the same way as the full-order flow field,

resulting in the differences between the full system and the POD-case responses on the

phase plot. Reducing the number of DOFs used for the structural model could improve

the POD-case panel response by eliminating high-frequency structural modes. At Mach

0.95, LCO states exist for any value of λ greater than 1750 (9). Only static panel deflections

have been identified for λ < 1750. POD/ROM/DD’s trained with snapshots from LCO

at Mach 0.95 and λ = 2500 were able to model the LCO states at Mach 0.95, however,

neither POD/ROM/DD could produce a static solution for λ < 1750. The snapshots only
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Figure 5.8 LCO for λ = 2500

contained data from an LCO flow field, and the resulting modes could not be linearly

combined to produce a static solution.

Next, the extendability of the POD/ROM/DD was explored. The POD basis from

training at λ = 2500 (the same model used for results shown in Figure 5.8) was used to

model the panel response for λ = 2000. Referring to Figure 5.3, this parameter variation

encompasses 23 of the LCO parameter space. No effort was made to optimize POD training

for accuracy or robustness over the parameter space. This example demonstrates the

robustness of POD/ROM in the presence of moving shocks with sub-optimal training.

The panel response and phase plot for λ = 2000 is shown in Figure 5.9. The full

system LCO response at λ = 2500 is shown with a thick dashed line. At λ = 2000 the

panel response is reduced, and the phase plot fits within the phase plot for λ = 2500.

Both POD/ROM/DD’s track this trend, while preserving the nonlinear panel behavior
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Figure 5.9 LCO for λ = 2000 (trained at λ = 2500)

at the new value of λ. The extendability of POD/ROM/DD across this large change in

parameters using this simple, sub-optimal approach demonstrates the potential for future

analysis of flows with moving shocks using this implementation.

5.4 Conclusions

A reduced order modeling approach was successfully applied to a transonic aeroelastic

problem with large motions of a strong shock. Domain decomposition enabled the use

of POD/ROM for this case. The non-Galerkin solver used a constrained optimization

approach to link internal boundaries. Time accurate results were obtained using different

time steps for each domain, and the reduced order fluid model was coupled to the panel

dynamics to provide an accurate reduced order aeroelastic system.

5-21



An 88% reduction in DOFs resulted a 66% computational saving for implementa-

tions using the full system model in the region of the flow field containing the shock.

When POD/ROM was used in the shock region, there was almost three orders of magni-

tude reduction in DOFs (from 64400 to 125). Both cases yielded accurate panel LCO, and

replicated correct motion of the transonic shock. In addition, both cases accurately mod-

eled transonic LCO states corresponding to parameter values not used for POD training.

This robustness across a parameter space demonstrated the potential of POD/ROM

for analysis of transonic LCO. The ultimate goal of such analysis is to fully characterize

the LCO branches within a parameter space, especially trying to identify regions of super-

critical LCO where LCO states can exist at parameter levels lower than those observed

in the gradual onset of LCO. At supercritical parameter values, both static and LCO so-

lutions are possible depending on the initial condition, with larger disturbances generally

exciting the LCO state. While linear analysis can be used to predict LCO onset values,

it cannot determine the existence of supercritical LCO states. Analysis with POD/ROM

may eventually be able to identify these LCO states, and help engineers adjust parameters

to ensure no LCO anywhere within the performance envelope of the aeroelastic system.
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VI. Summary

6.1 Conclusions

The ability of POD to produce reduced order models for inviscid fluid problems

with moving strong shocks has been thoroughly explored. Since POD is a linear method,

the use of POD/ROM is easily likened to other reduced order techniques that require

linearization of the flow field about some known solution. The moving shock problem is

untenable for these techniques because any motion of the shock requires re-linearization

of the problem, mitigating any computational savings. POD/ROM is different because it

uses the POD basis to identify a linear space that approximates the domain and range

of the Euler equations. This linear space is very low-dimensional, and the reduced order

advantage comes from recasting the full systems dynamics to solve for the coordinates of

the flow field projected into this linear space. This projection is the linear operation, and if

the linear space contains the proper discontinuous functions the shock motion is preserved.

While theoretically valid, the identification of a proper POD basis for the moving

shock case is problematic in practice. Projection into a linear space approximates the flow

field with a linear combination of the POD basis. When added together, it is impossible for

a small number of basis functions to produce a discontinuity at some location unless one or

more of the basis functions contain discontinuities at that location. For POD/ROM, this

principal means that a POD basis must contain vectors with discontinuous jumps at every

shock location to enable proper shock motion. Not only shock position, but shock strength

must be accurately reflected in the POD basis. The POD basis is obtained using the method

of snapshots, which takes samples of the full system dynamics and identifies a minimal set

of basis vectors using singular value decomposition. When using the method of snapshots,

samples must be taken at every shock location (and shock strength) of interest to produce

a POD basis that tracks discontinuities correctly. Essentially, POD/ROM can be used to

replicate shock behavior seen a priori in the full system, but it cannot introduce any new

shock motion. This proves useful for some applications where periodic shock motion is not

greatly affected across some parameter space of interest. For other applications where shock

motion is greatly affected across the parameter space, this restriction is unsatisfactory. In
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addition, a large region of shock motion requires a great many modes, while other portions

of the flow field only require a few. This spatial disparity in the fluid dynamics introduces

robustness problems that can lead to numerical failure unless the snapshots and modes

are very carefully selected. These problems motivated a new methodology for employing

POD/ROM with moving shocks.

6.1.1 Domain Decomposition. Domain decomposition was introduced to increase

the robustness of POD/ROM in the presence of moving shocks. The spatial solution do-

main was divided into regions to isolate the region containing the moving shock. Snapshots

of the entire solution domain were collected from the full system, but POD/ROMs for each

domain section were determined independently using the portion of the snapshots apply-

ing to that section. The POD basis for the shock region consisted of many discontinuous

modes to replicate the shock motion. In regions without shocks, the POD basis had fewer

modes with structures to match the more benign dynamics. Consequently the reduced

order model was more stable because the flow field was projected into several linear spaces

(one for each domain section) specially designed for the local dynamics.

For problems where the shock motion could not be adequately sampled, the full

system model was used in the shock region. The use of POD in non-shocked portions of

the flow still provided a significant reduction in both DOFs and computational expense.

The full system model in the shock region could produce any shock motion, regardless of

the POD training used for other domain sections in the flow. This ROM was robust across

a very large parameter space.

When the domain was decomposed, the fluid problem was divided into a number of

smaller problems linked by internal boundaries. An optimization-based methodology was

used to ensure smoothness between domains at the internal boundaries. This technique

involved overlapping the domain sections and constraining either the L1 or L2 error norm

in the overlapped regions. Lagrange constrained optimization was used to enforce this

condition. L1 constraints that adequately linked the internal boundaries were difficult to

identify, but once identified the solver implementation was very efficient. Identification

of L2 constraints was straight forward, but the implementation resulted in a less efficient
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solver. Overlapping the domains in a region of strong nonlinearity destabilized the full

system model. However, both L1 and L2 constraints worked well everywhere else in the

domain.

Domain decomposition also allowed regional time stepping to improve the efficiency

of the time accurate ROM. Outlying domain sections generally contained benign dynamics,

yet the time accurate solution was tied to a very small time step related to the dynamics in

the shock region. An implicit solver was used for the outlying regions, allowing for a very

large time step relative to either the full or reduced order solver used in the shock region.

This provided an additional boost in computational performance for the time accurate

case.

6.1.2 Applications. The POD basis was incorporated into both explicit and im-

plicit solvers using the subspace projection method. This method relied on the full system

dynamics to produce either time accurate, or steady state POD/ROMs for each domain

section. The POD/ROMs for each domain section were linked with the constrained opti-

mization technique to form a POD/ROM/DD for several applications. These application

demonstrated how POD could be accurately applied to the moving shock problem.

6.1.2.1 Quasi-Steady Shock Motion. The accuracy and order reduction of

the domain decomposition approach was first demonstrated for a quasi 1-D nozzle flow.

These POD/ROMs were trained using γ = 1.4. The accuracy was examined for quasi-

steady shock motion as γ was varied from 1.4→ 1.37. Flow field errors were less than 2%,

and the shock movement was tracked within one grid point of the true shock location. The

full order solution had 750 DOFs, the POD/ROM/DD with a full order shock region had

58 DOFs, and the POD/ROM/DD with a POD/ROM for the shock region had 55 DOFs.

The 1-D analysis is contained in Chapter 3.

Next, the approach was extended to 2-D. This analysis is contained in Chapter 4.

A very accurate and efficient reduced order model was generated for the 2-D blunt body

problem using POD/ROM/DD to isolate the region of the flow field containing the shock

motion. This region was solved at full order, while the remainder of the domain was
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treated with POD/ROM. The resulting ROM had a 4.3 to 1 reduction in DOFs and a

computational improvement of 4.7 to 1. The POD/ROM/DD provided accuracy within

5% over a parameter space of inlet Mach number and AoA that extended far beyond the

parameter space used for POD training. In contrast, the use of POD/ROM/DD with a

reduced order shock region was not an advantageous approach for the 2-D blunt body

problem. Full order explicit time integration for shock region was over 8 times faster than

the implicit reduced order calculations for this problem.

6.1.2.2 Unsteady Shock Motion. The reduced order modeling approach

was successfully applied to a transonic aeroelastic problem with large motions of a strong

shock. This analysis is contained in Chapter 5. Time accurate results were obtained using

different time steps for each domain, and the reduced order fluid model was coupled to the

panel dynamics to provide an accurate reduced order aeroelastic system. POD/ROM/DD

yielded accurate panel LCO, and replicated correct motion of the transonic shock. In

addition, both full system and POD/ROMs for the shock region accurately modeled all

the transonic LCO states, even though the POD/ROMs from all domain sections were

only trained for a single state. This robustness across a parameter space demonstrated the

potential of POD/ROM for transonic design in aeroelastic problems. An 88% reduction

in DOFs resulted a 66% computational saving for implementations using the full system

model in the region of the flow field containing the shock. When POD/ROM was used

in the shock region, there was almost three orders of magnitude reduction in DOFs (from

64400 to 125).

6.2 Significant Advances

The course of this research has provided several advances to the field of reduced order

fluid modeling. They include the extension of POD/ROM to the moving shock case, the

addition of domain decomposition to the use of POD/ROM, the extension of optimization-

based solvers to the field of reduced order modeling, and the application of reduced order

modeling to a transonic aeroelastic problem. These advances are delineated as follows:
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6.2.1 Shock Capturing with POD. Prior to this research, all applications of

POD to high-speed compressible flow problems involved stationary shock waves. The

extension of POD application and theory to moving shocks is a useful advancement. The

characteristics of an adequate POD basis for the moving shock problem, and the insights

into POD training to obtain such a basis are a key contribution.

6.2.2 Domain Decomposition. Decomposing the flow field into sections, and

applying POD/ROM independently to each section is a new innovation. This was a log-

ical extension of domain decomposition currently in use for large full system models. In

the later case, domain decomposition facilitates computational efficiency through parallel

computing. While parallel computing could also be used with the POD/ROM/DD, this

research focused on domain decomposition to improve solver robustness. Computational

performance for time accurate POD/ROM was improved with domain decomposition be-

cause it enabled regional time stepping. The application of regional time stepping to the

reduced order problem is an additional advancement.

6.2.3 Optimization-Based Solvers. Optimization solvers based on Lagrange con-

straints have emerged in the past two years for domain decomposition of full systems

models. The application of this approach to domain decomposition of reduced order mod-

eling is a new innovation. This research produced specific analysis, implementation, and

quantified results for the use of both L1 and L2 constraints. This contribution is essential

when using domain decomposition with POD/ROM. Explicit and implicit optimization-

based solver implementations were developed for both time accurate and steady state

applications.

6.2.4 Transonic Aeroelastic Panel Response. The innovations listed above en-

abled in the application of reduced order modeling to a transonic aeroelastic problem.

Previous research with POD/ROM avoided the transonic regime due to the presence of

strong moving shocks in the flow field. Until now, no reduced order modeling method has

been successfully applied to this problem.
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6.3 Summary and Future Work

The thesis statement for this dissertation claimed that “domain decomposition would

enable the use of POD to generate reasonable low order approximations of 2-D high speed

fluid flows with shock movement over confined regions.” This thesis has been thoroughly

validated by the development, analysis, implementation, and applications contained herein.

Future research is needed to realize the demonstrated potential for nearly three or-

ders of magnitude reduction in compute time. This gain in computational performance

was not realized in this research, because the non-Galerkin solver implementation was not

faster than the full-system implementation in the reduced order shock region. Instead,

computational gains of about one order of magnitude accompanied three orders of magni-

tude in DOF reduction. Although the explicit, non-Galerkin solver was not efficient, it did

demonstrate the existence and adequacy of POD based fluid modes to model an unsteady

shock.

An implementation methodology using Galerkin projection could provide the addi-

tional improvements in computational performance. Galerkin projection is a method to

identify a set of nonlinear ODEs that model the dynamics of the reduced order variable.

Instead of using the full system dynamics, this much smaller set of ODEs could be solved

in its place to produce a truly reduced order system. To date, the Galerkin approach with

POD has only addressed incompressible viscous problems with periodic boundaries. An

extension to incompressible flow with nonlinear boundaries is necessary for use with the

POD/ROM/DD. The viscous incompressible flow applications avoids nonlinear boundary

conditions since the velocity component are zero along solid surfaces, and neither density

nor energy are considered. The inclusion of density and energy, along with nonlinear,

coupled internal boundaries introduce difficulties that must be solved before the Galerkin

method can be used with POD/ROM/DD. Coupled nonlinear solid boundaries such as the

elastic panel equations must also be addressed.

This research represents a significant advancement toward integrating POD/ROM

into optimization algorithms with application to transonic aeroelastic design problems.

Once a more efficient reduced order implementation is identified, analysis with POD/ROM
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can go beyond demonstration. Transonic flutter analysis needs to be explored much more

fully than the handful of cases reported in the literature. Nonlinear optimization with

POD/ROM could identify key design parameters for aeroelastic structures.

Identification of an efficient method to couple nonlinear boundary conditions into

a reduced order fluid model would be a great advancement for control applications with

POD/ROM as well. The control surface deflections for many flow control problems come

from solid boundaries, and a reduced order set of dynamics coupling the flow field and

the control deflections could extend flow control applications beyond low-speed incom-

pressible flow, to compressible high-speed flows. Once a POD/ROM implementation is

identified with computing efficiency to match the order reduction seen in this research,

design optimization and control for high-speed flows could become a practical endeavor.

6-7



Bibliography

1. Romanowski, M .C. and Dowell, E. H. “Reduced Order Euler Equations for Unsteady
Aerodynamic Flows: Numerical Techniques.” AIAA 96-0528, 34th Aerospace Sciences
Meeting and Exhibit, Reno NV . January 1996.

2. Dowell, E. H. “Eigenmode Analysis in Unsteady Aerodynamics: Reduced-Order Anal-
ysis,” AIAA Journal , 34, n8 :1578–1583 August 1996.

3. Beran, P. S., Huttsell, L. J., Buxton, B. J., Noll, C. and Osswald, G. “Computational
Aeroelastic Techniques for Viscous Flow.” CEAS/AIAA/ICASE/NASA Langley Inter-
national Forum on Aeroelasticity and Structural Dynamics, Williamsburg, VA. June
22-25, 1999.

4. Hall, K. C., Thomas, J. P. and Dowell, E. H. “Reduced-Order Modeling of Unsteady
Small-Disturbance Flows Using a Frequency-Domain Proper Orthogonal Decomposi-
tion Technique.” AIAA 99-0655, 37th Aerospace Sciences Meeting and Exhibit, Reno,
NV . January 11-15, 1999.

5. Dowell, E. H., Hall, K. C., Thomas, J.P., Florea, R., Epureanu, B.I. and Heeg, J. “Re-
duced Order Models in Unsteady Aerodynamics.” AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, St. Louis, MO . April 12-
15, 1999.

6. Florea, R., Hall, K. C. and Dowell, E. H. “Eigenmode Analysis and Reduced
Order Modeling of Unsteady Transonic Full Potential Flow Around Isolated Air-
foils.” CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity
and Structural Dynamics, Williamsburg, VA. June 22-25, 1999.

7. Pettit, C. L. and Beran, P. S. “Reduced-Order Modeling for Flutter Prediction.”
AIAA 2000-1446-CP, CEAS/AIAA/ICASE/NASA Langley International Forum on
Aeroelasticity and Structural Dynamics, Williamsburg, VA. April 2000.

8. Mortara, S. A., Slater, J. C. and Beran, P. S. “An Optimal Proper Orthogonal Decom-
position Technique for the Computation of Nonlinear Panel Flutter.” AIAA 2000-1936 .
2000.

9. Beran, P. and Pettit, C. “Prediction of Nonlinear Panel Response Using Proper Or-
thogonal Decomposition.” AIAA 2001-1292, 42nd Structural, Structural Dynamics,
and Material Conference, Denver, CO . April 2001.

10. LeGresley, P. A. and Alonso, J. J. “Airfoil Design Optimization Using Reduced Order
Models Based on Proper Orthogonal Decomposition.” AIAA 2000-2545, Fluids 2000
Conference and Exhibit, Denver, CO . June 2000.

11. Ito, K. and Ravindran, S. S. “A Reduced-Order Method for Simulation and Control
of Fluid Flows,” Journal of Computational Physics, 143 :403–425 1998.

12. Shvartsman, S. Y. and Kevrekidis, I. G. “Nonlinear Model Reduction for Control of
Distributed Systems: a Computer-Assisted Study,” American Institute of Chemical
Engineering , 44 (7):1579–1595 1998.

BIB-1



13. Banerjee, S., Cole, J. V. and Jensen, K. F. “Nonlinear Model Reduction Strategies for
Rapid Thermal Processing Systems,” IEEE Transactions on Semiconductor Manufac-
turing , 11 (2):266–275 1998.

14. Kunisch, K. and Volkwein, S. “Control of the Burgers Equation by a Reduced-Order
Approach Using Proper Orthogonal Decomposition,” Journal of Optimization Theory
and Applications, 102 (2):345–371 1999.

15. Rediniotis, O. K., Ko, J., Yue, X. and Kurdila, A. J. “Synthetic Jets, their Reduced
Order Modeling and Applications to Flow Control.” AIAA 99-1000, 37th Aerospace
Sciences Meeting and Exhibit, Reno, NV . January 11-15, 1999.

16. Park, H. M. and Lee, M. W. “An Efficient Method of Solving the Navier-Stokes Equa-
tion for Flow Control,” International Journal for Numerical Methods in Engineering ,
v41 :1133–1151 1998.

17. Sirovich, L. “Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent
Structures,” Quarterly of Applied Mathematics, 45, n3 :561–571 October 1987.

18. Stakgold, Ivar. Green’s Functions and Boundary Value Problems (Second Edition).
Washington DC: John Wiley and Sons, Inc., 1998.

19. Holmes, P., Lumley, J.L. and Berkooz, G. Turbulence, Coherent Structures, Dynamical
Systems and Symmetry . Cambridge University Press, 1996.

20. Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. Spectral Methods in Fluid
Dynamics. Berlin: Springer-Verlag, 1988.

21. Beran, P. and Silva, W. “Reduced Order Modeling: New Approaches for Computa-
tional Physics.” AIAA 2001-0853, 39th Aerospace Sciences Meeting and Exhibit, Reno,
NV . January 2001.

22. Karhunen, K. Zur Spektral Theorie Stochastischer Prozesse. Ann. Acad. Sci. Fennicae,
Ser, 1946.

23. Loeve, M. Functions de Second Ordre. Paris, France: C. R. Academie des Sciences,
1945.

24. Lumley, J. L. “The Structure of Inhomogeneous Turbulence.” Proceedings of the Inter-
national Colloquium on the Fine Scale Structure of the Atmosphere and its Influence
on Radio Wave Propogation. 166–178. Moscow: Dokl. Akad. Nauk SSSR, 1967.

25. Moin, P. “Probing Turbulence via Large Eddy Simulation,” AIAA Paper 84-0174
1984.

26. Sirovich, L. and Rodriguez, J. D. “Coherent Structures and Chaos: A Model Program,”
Physics Letters, v120, n5 :211–214 February 1987.

27. Chambers, D. H., Adrian, R. J., Moin, P., Stewart, D. S. and Sung, H. J. “Karhunen-
Loeve Expansion of Burger’s Model of Turbulence,” Physics of Fluids, 31, n9 :2573–
2582 1988.

28. Rodriguez, J. D. and Sirovich, L. “Low-Dimensional Dynamics for the Complex
Ginzburg-Landau Equation,” Physica, v43 :77–86 1990.

BIB-2



29. Webber, G. A., Handler, R. A. and Sirovich, L. “The Karhunen-Loeve Decomposition
of Minimal Channel Flow,” Physics of Fluids, v9, n4 :1054–1066 April 1997.

30. Mahajan, A. J., Bakhle, M. A. and Dowell, E. H. “A New Method for Aeroelastic
Stability Analysis of Cascades Using Nonlinear, Time Marching CFD Solvers,” 5th
Symposium on Multidisciplinary Analysis and Optimization (AIAA 94-4396) 1994.

31. Kurdila, A.J., Carrol, B., Nishida, T. and Sheplak, M. “Reduced-Order Modeling for
Low Reynolds Number Flow Control.” SPIE Conference on Mathematics and Control
in Smart Structures, Newport Beach, CA3667 . 68–79. March 1999.

32. Hall, K .C. “Eigenanalysis of Unsteady Flows About Airfoils, Cascades, and Wings,”
AIAA Journal , 32, n12 :2426–2432 December 1994.

33. Glowinski, R. and Pironneau, O. “On a finite element approximation of the Stokes
problem,” Numerical Mathematics, 33 :397–424 1979.

34. Gunzburger, M. D. and Nicolaides, R. “Issues in the implementation of substructing
algorithms for the Navier-Stokes equations,” Applied Numerical Mathematics, 2 :243–
256 1986.

35. Cahouet, J. “On some difficulties occuring in the simulation of incompressible fluid
flows by domain decomposition methods.” Domain Decomposition in Scientific and
Engineering Computing, SIAM, Philadelphia, PA. 1988.

36. Fortin, M. and Aboulaich, R. “Schwarz’s decomposition method for incompressible
flow problems.” Proceedings of the First International Symposium on Domain Decom-
position Methods for Partial Differential Equations, SIAM, Philadelphia, PA. 333–349.
1988.

37. Gunzburger, M. D. and Nicolaides, R. “Issues in the implementation of substruct-
ing algorithms for the Navier-Stokes equations.” Advances in Computer Methods for
Partial Differential Equations, IMACS,New Brunswick, NJ . 57–63. 1988.

38. Carlenzoli, C., Quarteroni, A. and Valli, A. “Spectral domain decomposition meth-
ods for compressible Navier-Stokes equations.” Proceedings of the Fifth Interna-
tional Symposium on Domain Decomposition Methods for Partial Differential Equa-
tions, SIAM, Philadelphia, PA. 441–450. 1992.

39. Azaiez, M. and Quateroni, A. “A special Stokes solver in domain decomposition meth-
ods.” Domain Decomposition in Scientific and Engineering Computing, AMS, Provi-
dence, RI . 151–156. 1994.

40. J.Lions and Pironneau, O. “Non Overlapping Domain Decomposition for Evolu-
tion Operators,” Comptes rendus de l’Academie des sciences. Serie I. Mathematique,
330 (10):943–951 April 10, 2000.

41. J.Lions and Pironneau, O. “Overlapping Domain Decomposition for Evolution
Operators,” Comptes rendus de l’Academie des sciences. Serie I. Mathematique,
330 (10):937–943 April 10, 2000.

BIB-3



42. Gunzburger, M. D. and Lee, H. K. “An Optimization-Based Domain Decomposition
Method for the Navier-Stokes Equations,” Society for Industrial and Applied Mathe-
matics (SIAM) Journal of Numerical Analysis, 37 (5):1455–1480 May 4, 2000.

43. Du, Q. and Gunzburger, M. D. “A Gradent Approach to Optimization-Based Mul-
tidisciplinary Simulations and Nonoverlapping Domain Decomposition Algorithms,”
Society for Industrial and Applied Mathematics (SIAM) Journal of Numerical Analy-
sis, 37 (5):1513–1541 May 4, 2000.

44. Farhat, C., Macedo, A., Lesoinne, M., Roux, F., Magoules, F. and de La Bourdon-
naie, A. “Two-level domain decomposition methods with Lagrange multipliers for the
fast iterative solution of acoustic scattering problems,” Computer Methods in Applied
Mechanics and Engineering , 184 (2):213–241 2000.

45. Tannehill, John C., Anderson, Dale A. and Pletcher, Richard H. Computational Fluid
Mechanics and Heat Transfer . Washington DC: Hemishpere Publishing Company,
1997.

46. Janus, J.M. “The Development Of A Three-Dimensional Split Flux Vector Euler Solver
With Dynamic Grid Applications,” Masters Thesis 1984.

47. Sankar, L. N., Ruo, S. Y. and Malone, J. B. “Application of Surface Transpiration in
Computational Aerodynamics.” AIAA 86-0511, AIAA 24th Aerospace Sciences Meet-
ing, Reno, NV . January 1986.

48. Antonnen, J. S. R. Techniques for Reduced Order Modeling of Aeroelastic Structures.
PhD dissertation, Air Force Institute of Technology, School of Engineering and Man-
agement, 2001.

49. Naylor, Arch W. and Sell, George R. Linear Operator Theory in Engineering and
Science. New York NY: Springer-Verlag, Inc., 1982.

50. Park, H. and Lee, M. “Control of Navier-Stokes Equations by Means of Mode Reduc-
tion,” International Journal Numerical Methods in Fluids, 33 :535–557 2000.

51. Strang, Gilbert. Introduction to Applied Mathematics. Cambridge MA: Wellesley
Cambridge Press, 1986.

52. Shubin, G.R., Stephens, A.B. and Glaz, H.M. “Steady Shock Tracking and Newton’s
Method Applied to One-Dimensional Duct Flow,” Journal of Computational Physics,
39 :364–374 1981.

53. Selvam, R. P. and Morton, S. A. “Computation of Nonlinear Viscous Panel Flutter.”
AIAA 2001-1292 . 1998.

54. Hurka, J. and Ballmann, J. “Elastic Panels in Transonic Flow.” AIAA 2001-2722, 19th
AIAA Computational Fluid Dynamics Conference, Anaheim, CA. June 2001.

55. Yu, H. “Solving parabolic problems with different time steps in different regions in
space based domain decomposition methods,” Applied Numerical Mathematics: Trans-
actions of IMACS , 30 (4):475 1999.

BIB-4



56. Gordnier, R. E. and Visbal, M. R. “Development of a Three-Dimensional Viscous
Aeroelastic Solver for Nonlinear Panel Flutter.” AIAA 2000-2337 . June 2000.

57. Bendiksen, O. O. and Davis, G. A. “Nonlinear Traveling Wave Flutter of Panels in
Transonic Flow.” AIAA 1995-1486 . 1995.

58. Adams, Robert A. Sobolev Spaces. Orlando FL: Academic Press, Inc., 1975.

59. Maybeck, Peter S. Stochastic Estimation and Control , One. Arlington VA: Navtech
Book and Software Store, 1994.

60. Joshi, S.S, Speyer, J.L. and Kim, J. “Finite Dimensional Optimal Control of Poiseuille
Flow,” Journal or Guidance, Control and Dynamics, 22 (2):340–348 1999.

61. Cortelezzi, L., Leonard, A. and Doyle, J.C. “An example of active circulation control
of the unsteady separated flow past a semi-infinite plate,” Journal of Fluid Mechanics,
260 :127–154 1994.

62. Coller, B. D., Holmes, P. and Lumley, J. L. “Control of bursting in boundary layer
models,” Applied Mechanics Review , 6 (2):S139–S143 1994.

63. Delville, J., Cordier, L. and Bennet, J. “Large-scale-structure identification and con-
trol in turbulent shear flows.” Flow Control: Fundamentals and Practices. 199–273.
Springer, 1998.

64. Prabhu, R. D., Collis, S. S. and Chang, Y. “The influence of control on proper orthogo-
nal decomposition of wall-boudned turbulent flows,” Physics of Fluids, 13 (2):520–537
2001.

65. Sutton, G.P. Rocket Propulsion Elements. John Wiley and Sons, 1992.

66. Anderson, J.D. Fundamentals of Aerodynamics (Second Edition). New York: McGraw-
Hill, 1991.

67. Hill, P.G. and Peterson, C.R. Mechanics and Thermodynamics of Propulsion. Addison-
Wesley Publishing Company, 1965.

68. Huzel, D.K. and Huang, D.H. Modern Engineering for Design of Liquid-Propellant
Rocket Engines. AIAA, 1992.

69. Anderson, J.D. Computational Fluid Dynamics. McGraw-Hill, Inc, 1995.

70. Lucia, D. J., King, P. I., Beran, P. S. and Oxley, M. E. “Reduced Order Modeling for
a One-Dimensional Nozzle Flow with Moving Shocks.” AIAA 2001-2602, 19th AIAA
Computational Fluid Dynamics Conference, Anaheim, CA. June 2001.

71. Antonnen, J. S. R., King, P. I. and Beran, P. S. “The Accuracy of POD-Bases Reduced-
Order Models with Deforming Grids.” AIAA 2001-2541, 19th AIAA Computational
Fluid Dynamics Conference, Anaheim, CA. June 2001.

72. Lindsey, W. F. and Daley, B. N. “Effects of Compressibility on the Flow Past a Two-
Dimensional Bump.” Technical Note 2484, National Advisory Committee for Aeronau-
tics. 1952.

BIB-5



73. Kaplan, C. “The Flow of a Compressible Fluid Past a Curved Surface.” Report 768, Na-
tional Advisory Committee for Aeronautics. 1944.

74. Anderson, J. D. Hypersonic and High Temperature Gas Dynamics. McGraw-Hill,
1989.

BIB-6



Appendix A. Numerical Analysis

This appendix develops the theory for reduced order modeling of numerical fluid solvers

used in this research. Early in the discussion, operations on an infinite dimensional func-

tion space are approximated by operations on a large, but finite dimensional vector space

through spatial discretization of the domain. The governing equations for inviscid fluid

flow are formulated as an evolutionary operator, and the method of snapshots is developed

in this context. Linear operator theory and vector space analysis methods are used to de-

rive the reduced order mapping that is a characteristic of POD/ROM. The spectral theory

of linear operators is used to derive the optimal basis for the reduced order space identified

by the method of snapshots. The subspace projection approach for obtaining the reduced

order variables is derived.

A.1 Mathematical Foundations

The governing equations for inviscid flow are known as the Euler equations. For un-

steady two-dimensional flow, the Euler equations (in conservation form) are shown below.

δρ

δt
+
δ(ρu)

δx
+
δ(ρv)

δy
= 0 (A.1)

δ(ρu)

δt
+
δ(ρu2 + P )

δx
+
δ(ρuv)

δy
= 0 (A.2)

δ(ρu)

δt
+
δ(ρuv)

δx
+
δ(ρv2 + P )

δx
= 0 (A.3)

δEt
δt

+
δ(Et + P )u

δx
+
δ(Et + P )v

δy
= 0 (A.4)

Here, ρ is density, u is x-direction velocity, v is y-direction velocity, P is pressure, and Et

is total energy. The fluid variables can be renamed as follows,

u1(x, y, t) = ρ(x, y, t) (A.5)

u2(x, y, t) = ρ(x, y, t) · u(x, y, t) (A.6)

u3(x, y, t) = ρ(x, y, t) · v(x, y, t) (A.7)

u4(x, y, t) = Et(x, y, t) . (A.8)
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The isentropic flow equations are used to recast (A.1) through (A.4) using (A.5) through

(A.8). Here γ is the ratio of specific heats for air, and e is the internal energy per unit

mass.

P = γρe (A.9)

e =
Et
ρ
− 1

2
u2 (A.10)

Equations (A.1) through (A.4) can then be rewritten,

u̇1 = R1(u1, u2, u3, u4) (A.11)

u̇2 = R2(u1, u2, u3, u4) (A.12)

u̇3 = R3(u1, u2, u3, u4) (A.13)

u̇4 = R4(u1, u2, u3, u4) (A.14)

Equations (A.11) through (A.14) are a coupled set of four nonlinear partial differential

equations (PDEs) in two spatial dimensions (x, y), and in time (t). The term u̇ denotes the

time derivatives which are segregated from the spatial derivatives. The spatial derivatives

are nonlinear, and they are represented by the nonlinear differential operator R. Since

the time derivative is a linear operator, this system can be recast as a time evolution of

spatial functions. An evolution operator is derived by integrating in time from a given

initial condition.

u1(x, y, t+∆t) = u1(x, y, t) +

∫ t+∆t

t
R1(u1, u2, u3, u4)dt (A.15)

u2(x, y, t+∆t) = u2(x, y, t) +

∫ t+∆t

t
R2(u1, u2, u3, u4)dt (A.16)

u3(x, y, t+∆t) = u3(x, y, t) +

∫ t+∆t

t
R3(u1, u2, u3, u4)dt (A.17)

u4(x, y, t+∆t) = u4(x, y, t) +

∫ t+∆t

t
R4(u1, u2, u3, u4)dt , (A.18)
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which for small ∆t, can be approximated in a number of ways including,

u1(x, y, t+∆t) ∼= u1(x, y, t) + ∆tR1(u1, u2, u3, u4)

u2(x, y, t+∆t) ∼= u2(x, y, t) + ∆tR2(u1, u2, u3, u4) (A.19)

u3(x, y, t+∆t) ∼= u3(x, y, t) + ∆tR3(u1, u2, u3, u4)

u4(x, y, t+∆t) ∼= u4(x, y, t) + ∆tR4(u1, u2, u3, u4)

∆t is a fixed time step, and this approximate equation set can be formulated as a single

state transition equation. A four-tuple set of initial spatial functions,

U(x, t) = (u1(x, t), u2(x, t), u3(x, t), u4(x, t)) (A.20)

evolve over time by repeated application of a nonlinear differential operator R, which is

shown in the form of a state transition function K in equation (A.22),

U(x, t+∆t) = U(x, t) + ∆tR(U(x, t)) (A.21)

U(x, t+∆t) = K(U(x, t)) . (A.22)

Notice that the spatial variables x and y have been generalized to a single spatial variable

x for notational convenience. The variable x applies to the spatial component of either

1-D, 2-D or 3-D problems. K can now be considered as an operator on functions of x only,

and the following notation change reflects this,

u1(x, y, tn) ⇒ ψ1n(x) (A.23)

u2(x, y, tn) ⇒ ψ2n(x) (A.24)

u3(x, y, tn) ⇒ ψ3n(x) (A.25)

u4(x, y, tn) ⇒ ψ4n(x) . (A.26)

The subscript for ψ refers to the sequence of progression from input functions at n to

output functions at n + 1 in regard to a single application of the nonlinear operator K.

The superscript on ψ denotes which of the fluid variables is represented. Consider a single
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application of K, to the ordered four-tuple {ψ1n, ψ2n, ψ3n, ψ4n}. The domain and range of

K will come from the set of all functions of x with sufficient smoothness such that the

spatial derivatives in (A.11) through (A.14) are defined. In addition, these equations are

ill-posed without sufficient spatial boundary conditions to produce a unique solution. The

domain of K is further restriction to only include functions meeting the specified boundary

conditions for U(x, t). In general, the domain and range of K do not form a linear space

(49, 58, 19). Instead, they form an operator manifold X.

Repeated application of K will take any initial set of functions (ψ10, ψ
2
0, ψ

3
0, ψ

4
0) and

propagate it along a path through the four-tuple operator manifold (X1×X2×X3×X4).
If there is a steady state solution, repeated applications of K will ultimately converge to

these functions and any additional applications of K will not change the result.

In many cases, the Euler equations as depicted in (A.1) through (A.4) will yield a

steady state solution. Consider Figure A.1 for the path of ψ1n ∈ X1 as n : 0 → nss where

nss denotes the increment in the sequence after which steady state is achieved. When the

X1

ψ0
1
ψ1

1

ψ2
1

ψ3
1

ψ4
1

ψ5
1

ψn
1

ψ1
n+1

ψss
1

…

Trajectory for
a specific initial 

condition

Figure A.1 Notional Trajectory within the Operator Manifold

boundary conditions are held fixed at values that result in steady state flow fields, the

trajectories of (ψ1n, ψ
2
n, ψ

3
n, ψ

4
n) will reach the same steady state from any initial condition

that satisfies the boundary conditions. Any element of (X1×X2×X3×X4) is a candidate

outcome of the operator K with few exceptions. Once the infinite function space X is

spatially discretized into a finite dimensional vector space EN , these exceptions will no
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longer be a concern, so both RK (the range of K) and DK (the domain of K) consist of

all functions contained in the operational manifold (X1 ×X2 ×X3 ×X4).

A.2 Foundations for Reduced Order Modeling

A.2.1 Overview. The reduced order modeling goal is to recreate the flow field

evolution and/or the steady state solution without the computational burden of the full

system solver. For 2-D and 3-D viscous flow fields, the computational load for solutions

can mandate days of computer time in a high performance computing environment to

obtain a single solution. This section will develop a methodology to reduce the spatial

degrees of freedom, and increase the time integration efficiency for obtaining approximate

solutions to equations (A.11) through (A.14). This methodology exploits a data eigenvalue

technique known as Proper Orthogonal Decomposition (POD) for spatial order reduction.

POD identifies fluid solution modes and the nonlinear operator K is recast to solve for

modal coefficients which are functions of time. This Reduced Order Model (ROM) then

replaces the full system model for the computation of flow variables.

The flow field solution is approximated by any of a number of numerical techniques.

Numerical flow solvers discretize the spatial domain resulting in a vary large number of

DOFs. Each DOF corresponds to a dimension in Euclidean “N -space.” The main product

of the POD process is a mapping between the low and high dimensional outcomes. Here

“dimension” is interchanged with “degree of freedom,” and the full system numerical flow

solver yields the high dimensional outcomes. The mapping is used to transform the high

dimensional problem into a low dimensional problem in Euclidean “M -space” whereM <<

N . The low dimensional problem is then solved quickly, and transformed back to the high

dimensional solution.

The first step in the POD process is to approximate the operator manifold X with

a linear space `. This problem requires four-tuples (`1 × `2 × `3 × `4) to approximate

(X1×X2×X3×X4). The linear manifold must contain every flow vector (ψ1n, ψ
2
n, ψ

3
n, ψ

4
n)

needed to approximate the flow solutions of interest. Errors are introduced to the flow

solution vector when ψn /∈ `. Once the linear manifold is identified, the isomorphism

between the linear manifold ` and the space of column vectors in EQ is exploited, where

A-5



Q is the dimension of `. The elements of the isomorphic spaces (E1Q×E2Q×E3Q×E4Q) are
the coordinates of each N -dimensional fluid variable in terms of an appropriate basis.

Coordinate generation for the elements of `i (here i denotes one of the four fluid

variables) produces a non-symmetric linear operator from `i to E
i
Q. The pseudo inverse S

is used to obtain an eigenvalue decomposition of the elements of E i
Q using Singular Value

Decomposition (SVD). The eigenvectors from the SVD of S form an orthonormal basis

for Ei
Q, and transforming Ei

Q to this basis enables an optimal truncation of the degrees of

freedom in Ei
Q that contribute the least to the L2 norm of the elements. The truncated

vector spaces for each fluid variable do not need to have the same dimension, and the

Euclidean four-tuple (E1M(1) × E2M(2) × E3M(3) × E4M(4)), where M(i) < Q, is the reduced

order space for the POD/ROM. In summary, POD approximates the domain and range of

K with a linear space of four-tuples from Euclidean Q-space, and reduces this further to

a four-tuple of M(i) dimensional vector spaces via SVD and truncation.

A.2.2 POD/ROM Applied to a Fluid Problem. Now we specifically develop this

methodology for the 2-D Euler equations. With a full system model spatially discretized to

N degrees of freedom for operation on EN , the POD/ROM will operate on some reduced

order space EM where M <<< N . If K were a linear operator, a Rayleigh-Ritz procedure

could be used to identify the operator eigenmodes, and the low energy modes could be

truncated without affecting disproportionate errors upon the solution (18). However, in

dealing with a nonlinear operator K, the solution modes are determined geometrically by

POD, and modal truncation is an empirical process that begins by eliminating low energy

degrees of freedom, but is not complete until the accuracy of the resulting reduced order

model is evaluated.

The first step in the POD/ROM process is identifying an appropriate linear manifold

` using the method of snapshots. Snapshots are samples of the approximate flow field

solution from the numerical flow solver. One way to collect snapshots is to choose some

value of ∆t and collect outputs from the time evolution of the full system at each time step.

Considering the trajectory diagram in Figure A.1, this procedure is essentially collecting
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sets of ψin which are N dimensional vectors. The number of snapshots required (Q) is

generally much smaller than N .

If there is any question about the required number of snapshots Q, it is better to

take a large number of snapshots. Later SVD will be applied, and redundant data will be

weeded out via truncation. So consider a set of Q snapshots of the fluid variables ψ1j , ψ
2
l ,

ψ3p, ψ
4
r shown below,

{ψ1j=1,2,...Q} = {ψ11, ψ12, ψ13, . . . , ψ1Q} (A.27)

{ψ2l=1,2,...Q} = {ψ21, ψ22, ψ23, . . . , ψ2Q} (A.28)

{ψ3p=1,2,...Q} = {ψ31, ψ32, ψ33, . . . , ψ3Q} (A.29)

{ψ4r=1,2,...Q} = {ψ41, ψ42, ψ43, . . . , ψ4Q} . (A.30)

For now, a further restriction is required that the sets {ψ1j }, {ψ2l }, {ψ3p}, and {ψ4r} must

all be linearly independent subsets of EN , and define the four-tuple of linear spaces ` =

(`1 × `2 × `3 × `4) as follows.

`1 = Span({ψ1j=1,2,...Q}) (A.31)

`2 = Span({ψ2l=1,2,...Q}) (A.32)

`3 = Span({ψ3p=1,2,...Q}) (A.33)

`4 = Span({ψ4r=1,2,...Q}) (A.34)

Which implies that each {ψij} is a basis for each `i. With the linear space ` defined, the

reduced order model can be constructed as follows. For the ith fluid variable consider

µ ∈ `i, where µ is some linear combination of {ψin} the basis vectors for `i. When operated

on by K, there are no guarantee that the result is in `i. So consider the projection of Kµ

onto `i, in the hope that the projection of Kµi onto `
⊥
i is very small. Projection onto `i is

itself a linear operator P , and so define a new operator K̃ = PK which takes the outcome

of the operation K on µ and projects this vector onto `i such that

K̃µ = PKµ = w ∈ `i; ∀µ ∈ `i . (A.35)
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Now consider the operator K̃ acting on the fluid variable µ. The reduced order space for

this fluid variable is obtained via the operations depicted below in Figure A.2.

Xi

}{ i
Q

ii
i S ϕϕϕ ,,, 21

��
=

K
~

C

S
V

T
µ w

[ ]{ }ϕw [ ]{ }*eigSSw

ŵ

QE

)(iME

Figure A.2 Obtaining a Reduced Order Space

C is the linear operation that produces the coordinates of w. The result is a vector of

real numbers in EQ. S is the pseudo inverse of C, mapping vectors in EQ to their original

counterparts in `i. The operator V is a transformation to the coordinates of w from the

basis formed by the orthonormal eigenvectors found via SVD on S. The operator T is

a truncation of Q −M(i) coordinates of w in this new basis. Before truncating low L2

energy degrees of freedom one must check how the contribution of low energy modes to

the solution under the operation of K̃.

The choice of using the eigenvectors from the SVD of S as a basis for the coordinates

of w provides the optimal set of coordinates for truncation (19). This is because it generates

the basis that most efficiently aligns with the structure of the coordinates of all w ∈ `i. As

a result, there is no more efficient basis to maximize the projection of the coordinates of any

w ∈ `i onto a subset of the first M dimensions of the basis set. This allows identification

of the dimensions of EQ that contribute little geometrically to the elements of `i. This is

discussed more fully later.

C is the operator that provides the coordinates of w in terms of the basis for `i which

is the set of snapshots for the ith fluid variable {ψin}. This basis has Q elements and the

coordinates are a set of scalars {c1, c2, . . . , cQ}. For continuous functions in x, C uses the
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L2 inner product and is shown to be the following.

c1 =
〈w,ψi1〉
‖ ψi1 ‖

(A.36)

c2 =
〈w,ψi2〉
‖ ψi2 ‖

(A.37)

... (A.38)

cQ =
〈w,ψiQ〉
‖ ψiQ ‖

(A.39)

When spatially discretized to N degrees of freedom, the basis set consist of vectors in EN .

The inner product becomes a dot product, and the operator of interest S from EQ to EN

is derived, for which C is the pseudo inverse.

〈w,ψij〉
‖ ψij ‖

⇒
(ψij)

Tw

(ψij)
Tψij

(A.40)

cj =
(ψij)

Tw

(ψij)
Tψij

(A.41)

(ψij)
Tψijcj = (ψij)

Tw (A.42)



(ψi1)
Tψi1c1

(ψi2)
Tψi2c2
...

(ψiQ)
TψiQcQ




=




(ψi1)
Tw

(ψi2)
Tw
...

(ψiQ)
Tw




(A.43)




(ψi1)
Tψi1 0 . . . 0

0 (ψi2)
Tψi2 . . . 0

...
...

. . .
...

0 0 . . . (ψiQ)
TψiQ







c1

c2
...

cQ




=




. . . ψi1 . . .

. . . ψi2 . . .
...

. . . ψiQ . . .



w (A.44)




. . . ψi1 . . .

. . . ψi2 . . .
...

. . . ψiQ . . .







...
... . . .

...

ψi1 ψi2 . . . ψiQ
...

... . . .
...







c1

c2
...

cQ




=




. . . ψi1 . . .

. . . ψi2 . . .
...

. . . ψiQ . . .



w (A.45)
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This is only true when,




...
... . . .

...

ψi1 ψi2 . . . ψiQ
...

... . . .
...







c1

c2
...

cQ




= w . (A.46)

Therefore,

S [w]{ψ} = w (A.47)

Cw = [w]{ψ} , (A.48)

where

S =




...
... . . .

...

ψi1 ψi2 . . . ψiQ
...

... . . .
...


 [w]{ψ} =




c1

c2
...

cQ




C = (STS)−1ST . (A.49)

S is a N × Q matrix whose columns are the basis vectors for the ith fluid element

{ψin}. C is seen to be the left inverse of S, generating the coordinates of w in the basis

{ψin}. Also consider the adjoint of S, which is ST mapping EN to EQ (of course ST 6= C

even though they both map EN to EQ). These operations are depicted in Figure A.3.

The set of Q snapshots of each fluid variable {ψin} forms a basis for each `i, and by

using the coordinates of elements of `i the order of the problem has been reduced from

EN to EQ. Even though Q << N , the number of degrees of freedom can be reduced

further still. When Q is too large, it is difficult to obtain linearly distinct sets. This

causes numerical difficulties when inverting the nearly singular matrix later on in this

process. [w]{ψ} is transformed into a new ordered basis {vn} = {v1, v2, . . . , vQ} where the

last Q − (M(i) + 1) components of [w]{vn}
can be optimally truncated. This creates an

M(i) dimensional vector ŵ ∈ EM(i) where M(i) < Q. This truncation procedure is unique

for each fluid variable. The proper basis {vn} is selected in such a way as to maximize

A-10



"

TS

w

[ ]{ }ϕw

QE
S

C

Figure A.3 Linear Operations between EQ and EN

equation (A.50), where ŵaug is simply ŵ augmented with Q− (M(i) + 1) zeros in the last

vector locations to give meaning to the inner product.

max{vn}⊂`i

〈
ŵaug, [w]{vn}

〉
; ∀ w ∈ `i (A.50)

where,

[w]{vn}
=




c1

c2
...

cM(i)

cM(i)+1
...

cQ



{vn}

ŵaug =




c1

c2
...

cM(i)

0
...

0



{vn}

. (A.51)

This is a geometric optimization on the elements of EQ. It implies that the first

M(i) POD basis functions capture more energy on average that the first M(i) functions

of any other basis (19). Consider the operator S from EQ to `i. If S were a symmetric

operator, the expansion theorem for linear operators could be applied to obtain a set of

eigenfunctions. A transition to this new basis would meet the optimality conditions from

equation (A.50) above (19, 18). This same result can also be derived by variational princi-
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ples (19, 18). However, S is a non-symmetric linear operator from EQ to EN . Fortunately

the same optimal expansion can be obtained using the eigenvectors of either STS or SST ,

which is known as the Singular Value Decomposition of S (18). Since an orthonormal

basis for EQ where Q << N is desired, consider the eigenvectors of the Q×Q matrix STS.

The operator STS is non-negative definite (19), which guarantees the existence of Q total

eigenvalues, some positive and others zero valued. The eigenvectors associates with each

eigenvalue are guaranteed to be mutually orthogonal vectors in Euclidean Q-space.

The operation of ST on the elements of `i is described first. The range of ST is EQ,

and SVD will optimally reproduce the elements of EQ using {un}; the set of orthonormal

eigenvectors of STS.

ŵψ = STw =

Q∑

n=1

〈STw, un〉un (A.52)

The non-zero eigenvalues of STS are identical to the eigenvalues of SST . If ST is a Q×N
matrix of rank Q (Q < N), then STS will have Q non-zero eigenvalues producing a set

of Q eigenvectors {un} = {u1, u2, . . . , uQ}. Likewise, SST will have the same Q non-zero

eigenvalues along with N − Q zero eigenvalues. The non-zero eigenvalues will yield a set

of Q eigenvectors {vn} = {v1, v2, . . . , vQ}. The sets of eigenvectors are related (18),

vn =
Sun
λn

, (A.53)

which leads to the following result,

STw =

Q∑

n=1

〈STw, un〉un (A.54)

STw =

Q∑

n=1

〈w, Sun〉un (A.55)

STw =

Q∑

n=1

〈w, λnvn〉un (A.56)

STw = λ1〈w, v1〉u1 + λ2〈w, v2〉u2 + . . . λQ〈w, vQ〉uQ , (A.57)
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STw =




...
... . . .

...

u1 u2 . . . uQ
...

... . . .
...







λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λQ







〈w, v1〉
〈w, v2〉

...

〈w, vQ〉



. (A.58)

Now define the following matrices,

VQ =




...
... . . .

...

u1 u2 . . . uQ
...

... . . .
...


 ΛQ =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λQ




ŵQ =




〈w, v1〉
〈w, v2〉

...

〈w, vQ〉




.

(A.59)

Notice that VQ is the solution to the eigen equation STSVQ = VQΛQ. This yields the

reduced order linear mapping ΨQ,

STw = VQΛQŵQ (A.60)

STw = STSVQŵQ (A.61)

w = SVQŵQ (A.62)

ΨQ = SVQ (A.63)

w = ΨQŵQ . (A.64)

The linear operation ΨQ transforms w ∈ `i into EQ. The elements of EQ are the

coordinates of w in the basis {vn} which are the set of eigenvectors of SST corresponding

to non-zero eigenvalues. The elements of the basis {vn} = {v1, v2, . . . , vQ} are ordered

by eigenvalue λ1 > λ2 > . . . > λQ. If λM+1 <<< λ1 for the ith fluid variable, λM+1 >

λM+2 > . . . > λQ and their associated eigenvectors can be eliminated with little geometric

affect to the elements of EQ. This truncation produces a vector ŵ ∈ EM(i), and the

reduced order space for K is the linear space (EM(1) × EM(2) × EM(3) × EM(4)). Since

the eigenvectors associated with the truncated eigenvalues are excluded, the coordinate

transformation matrix of eigenvectors V becomes a Q×M(i) matrix.
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The final step involves transforming the operatorK for operation in (EM(1)×EM(2)×
EM(3) × EM(4)) instead of operation on (X1 ×X2 ×X3 ×X4). This is most simply done

using subspace projection (3). A unique reduced order mapping can be identified for each

of the fluid variables,

w1 = Ψ1ŵ1 = S1V1ŵ1 (A.65)

w2 = Ψ2ŵ2 = S2V2ŵ2 (A.66)

w3 = Ψ3ŵ3 = S3V3ŵ3 (A.67)

w4 = Ψ4ŵ4 = S4V4ŵ4 , (A.68)

where (w1, w2, w3, w4) ∈ (X1×X2×X3×X4) ⊂ (EN×EN×EN×EN ); also (ŵ1, ŵ2, ŵ3, ŵ4) ∈
(EM(1)×EM(2)×EM(3)×EM(4)). The full and reduced order fluid variables are collocated

into a single column vector U .

U =




↑
...

w1
...

↓
...

↑
...

w4
...

↓




∈ E4N ; Û =




↑
ŵ1

↓
...

↑
ŵ4

↓




∈ EM(1)+M(2)+M(3)+M(4) (A.69)
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The linear mapping between U and Û is,

U =




Ψ1 0 0 0

0 Ψ2 0 0

0 0 Ψ3 0

0 0 0 Ψ4



Û (A.70)

U =




S1V1 0 0 0

0 S2V2 0 0

0 0 S3V3 0

0 0 0 S4V4



Û (A.71)

U =




S1 0 0 0

0 S2 0 0

0 0 S3 0

0 0 0 S4







V1 0 0 0

0 V2 0 0

0 0 V3 0

0 0 0 V3



Û , (A.72)

which is denoted as follows,

U = ΨÛ

U = SV Û , (A.73)

with the following definitions,

Ψ =




Ψ1 0 0 0

0 Ψ2 0 0

0 0 Ψ3 0

0 0 0 Ψ4




S =




S1 0 0 0

0 S2 0 0

0 0 S3 0

0 0 0 S4




V =




V1 0 0 0

0 V2 0 0

0 0 V3 0

0 0 0 V4




Λ =




Λ1 0 0 0

0 Λ2 0 0

0 0 Λ3 0

0 0 0 Λ4




.

(A.74)
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Here Ψ is a 4N × (M(1) +M(2) +M(3) +M(4)) matrix, S is a 4N × 4Q matrix, V is a

4Q× (M(1) +M(2) +M(3) +M(4)) matrix, and Λ is a (M(1) +M(2) +M(3) +M(4))×
(M(1) +M(2) +M(3) +M(4)) matrix. To reduce the order of equation (A.21), (A.73)

needs to be rearranged. Remembering that V is a non-symmetric Q × N matrix with

linearly independent columns (they are orthogonal), the pseudo inverse of V exists, and it

is used to invert the reduced order mapping. Also, the zero valued eigenvalues have been

removed from Λ which becomes a diagonal matrix with positive values on the diagonals.

Thus the invertibility of Λ is also guaranteed.

U = S · V · Û (A.75)

(SV )T · U = (SV )T · SV · Û (A.76)

(SV )T · U = V TSTSV · Û (A.77)

V TST · U = V TV Λ · Û (A.78)

Û = Λ−1 · (V TV )−1 · V T · ST · U (A.79)

When V is symmetric, which will occur if no modal truncation is needed to eliminate zero

values eigenvalues, the pseudo inverse can be eliminated and this equations reduces to the

following.

Û = Λ−1 · V −1 · S · U (A.80)

Multiplying both sides of equation (A.21) by Λ−1(V TV )−1V TST yields the following re-

duced order flow solver.

Û
n+1

= Û
n
+∆t · Λ−1(V TV )−1V TST ·R(Un) (A.81)

So the POD/ROM reduces each flow variable from 4N to M = M(1) + M(2) +

M(3) + M(4), where M is the combined number of snapshots for each fluid variable,

truncated to some extent. Each reduced order degree of freedom modifies a spatial solution

mode, whose contribution to the full order solution is of order with the magnitude of the

corresponding eigenvalue. The method of order reduction in equation (A.81) relies on the

full order function evaluation at each flow field integration step. As such, the order of each
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integration step is not actually reduced. However, this reduction technique can greatly

increase the time step size allowed for stability.

A.3 Summary of POD/ROM

To summarize the reduced order modeling procedure, refer to the boxology of equa-

tion (A.81) in Figure A.4.
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Figure A.4 Operation on the Reduced Order Space

Considering each fluid variable separately at time interval n, the process takes the

reduced order vector ŵni maps it into the coordinates of wni in the basis of `i which is the

set of snapshots {ψin}. The result is a vector in EQ, whose entries are the modal coefficients

used to reconstruct the full order flow variable wni as a function of x (or an element of EN )

via operation Si.

This function (wni ) is then operated on by the nonlinear operator R, along with the

other fluid variables. This operation produces a residual rn+1i ∈ Xi at full system order,
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which must be augmented with the last solution to produce the completed state update.

This full order residual is projected into `i via the linear operator ST . The combination

of ST ◦ R(w) is a projection operator R̃ which casts the full order residual onto `i after

every state update. The projection of the full order residual into `i is next projected into

the reduced order space EM(i) via the operation ∆t · Λ−1i (V T
i Vi)

−1V T
i . The results is a

reduced order state update which is added to ŵni to obtain ŵn+1i .

The reduced order model propagates the modal coefficients Û for all time of interest.

Equation (A.73) maps the reduced order results for all time back into the full order operator

manifold (X1 ×X2 ×X3 ×X4) where the accuracy can be analyzed.
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Appendix B. Additional Results for Quasi 1-D Nozzle

Additional results and analysis are presented herein for the quasi 1-D nozzle problem.

The full order solution was generated via Roe’s scheme with 63 spatial grid points, and

the reduced order models were generated via methods described in Appendix A. Two

transient flow evolutions are considered; one that includes a large range of dynamics, and

a low dynamic transient case that never deviates greatly from its initial condition. These

two cases provided insight into accurate reduced order modeling of shock waves with POD.

Shannon sampling theory (59) suggests that many snapshots of a highly dynamic

flow evolution are necessary to recreate the flow evolution with a reduced order model.

In addition, the reduced order model for the highly dynamical case should require more

modes relative to a low dynamic case. These issues are investigated herein. Also, obser-

vations are made regarding the effect of discontinuities on the number of modes. Spectral

methods applied to fluid dynamics indicate an inordinate number of modes (relative to

“smooth” flow fields) are required to recreate shock like discontinuities. Much like many

terms in a Fourier series are required to reproduce a step function (20). The necessity of

many modes in the POD/ROM to replicate discontinuous spatial functions is investigated.

Finally, although the reduced order model considers three fluid variables (ρ ∈ X1, ρu ∈ X2,
Et ∈ X3), the discussion will generally center on the behavior of density (ρ). This avoids

excessive discussion when all the fluid variables behave in a similar manner.

B.1 Replicating a 100 Second High Dynamic Flow Evolution

The high dynamic case was devised to produce a wide variety of flow dynamics during

the evolution of the flow. Since the flow converges to steady state, the evolution was a

Cauchy sequence of vectors (18). This is depicted notionally in Figure B.1. The initial

conditions and boundary data described in Chapter 3 were used, so the steady state solution

for K (that is ψ1100 in Figure B.1) was the curve for γ = 1.4 shown in Figure 3.5. Notice

that the steady state solution contained a discontinuity. Shocks occur when the defining

boundary conditions force K to display hyperbolic PDE behavior for a region of the flow

field. The resulting flow evolution swept from smooth linear functions to discontinuous

B-1



X1

ψ0
1
ψ1

1

ψ2
1

ψ3
1

ψ4
1

ψn
1

ψ1
n+1

ψ100
1

…

Figure B.1 100s Density Function Flow Evolution

ones. The 100s case started as a linear function, and formed a discontinuity. Next, the

location of the discontinuity underwent a harmonic oscillation about the steady state shock

location. The steady state solution was very nearly reached by 100s.

A reduced order model was created for this case by taking snapshots of each fluid

variable at fixed time increments. These sets of N = 63 vectors formed the basis functions

for the three linear manifolds `1 = S{ψ1n} ⊂ EN , `2 = S{ψ2n} ⊂ EN , and `3 = S{ψ3n} ⊂
EN . Three metrics were considered to record the accuracy of the reduced order models.

The first was the maximum error norm Lmax, which is evaluated in equation (B.1) (shown

for error in density). Notice that Lmax is reported as a percentage of the value of the fluid

variable at that x location and time.

Lmax(t) =

max
xmax ∈ R |err(x, t)|

ρ(xmax, t)cfd
× 100% (B.1)

err(x, t) = ρ(x, t)cfd − ρ(x, t)pod

The L2 error norm was also used as shown in equation (B.2). For comparative reference,

the spatially averaged value of each fluid variable was also computed at each corresponding

time (shown for density ρ). At any given instant in time, the L2 error norm represented

a standard deviation about the mean value of the fluid variable. Using density as an
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example, if L2err was a small percentage of ρ, the POD/ROM did a good job of recreating

density over the great majority of the spatial domain (at that time step). If a small part of

the spatial domain was characterized by large errors, the L2 error norm would average this

out, but the Lmax norm would be large to capture this event. However, if the POD/ROM

kept to within a certain threshold of the true solution, but never accurately replicated any

significant spatial portion of the function, then the L2 error norm would be large, when

the Lmax norm might be small.

L2err(t) =

√∫ xf

0
err(x, t)2dx (B.2)

ρ(t) =

∫ xf

0 ρ(x, t)dx

xf

Both Lmax and L2err evaluate accuracy for a given value of time. The time integrated L2

norm described in equation (B.3) was used to consider the performance of the POD/ROM

for the flow evolution. The spatially averaged value of the fluid variable was time integrated

to provided a metric for how well the POD/ROM tracked the entire flow evolution.

Lterr =

∫ tf

0
L2err(t)dt (B.3)

ρt =

∫ tf

0
ρ(t)dt

With these metrics in place, the accuracy of several POD/ROMs was evaluated for this

case. The POD/ROMs used both 50 and 100 snapshots, taken at 2s and 1s intervals

respectively during the 100s evolution of the full system model.

Since the test case was relatively low order (spatial discretization of N = 63), the set

of 100 snapshots had linearly dependent data. Even though the simple 1-D problem was

relatively low order, a large number of snapshots was required to build the POD/ROM.

Use of a very few snapshots required exceptional insight into the structure of the flow

field. Since it was hard to know a priori where in time to take snapshots to capture the

key solution structures, the safest method was to take too many snapshots and truncate

unnecessary data. In working with 100 snapshots with Q = 100 > N = 63, the earlier

restriction that the snapshots be linearly independent vectors was neglected. This restric-
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tion was not strictly necessary as long as truncation is employed to eliminate redundant

data. This permited an extremely large number of snapshots.

The performance of each POD/ROM is recorded in the tables at the end of this sec-

tion. Performance in terms of the Lmax error norm is presented in Table B.1, performance

in terms of the L2err norm is presented in Table B.2, and performance in terms of the L2err

norm is presented in Table B.3. These results are summarized below.

An exceptionally good representation of the full order trajectory was obtained using

58 total modes (20 modes for ρ, 19 modes for ρu, and 19 modes for Et). Every metric

indicates a close adherence to the true spatial solution for each fluid variable at each point

in time. The largest Lmax for any fluid variable was only 1.15%. This indicates that

there is no place or time that the reduced order model does not closely match the true

solution. The largest L2err for any fluid variable at any time was only 0.404%, indicating

that spatial features of the solution are also closely tracked for all time. The small value of

Lterr (about 0.1%) supports this conclusion as well. For this high dynamical flow evolution,

an exceptional solution accuracy was maintained while reducing the order from 189 degrees

of freedom to 58.

Depending on the application, errors of 5% on the average might be acceptable. This

was achieved with about 45 modes (15 modes for ρ, 15 modes for ρu, and 15 modes for

Et). From 36 to 28 modes, the reduced order model generated a reasonable approximation

of the full order solution for most of the trajectory. Reduced order models below 25 modes

were of questionable use. When using 50 snapshots, an exceptionally accurate solution

could not be obtained. The timing of the 50 snapshots did not capture the key structures

for a highly accurate solution. However, the 47 mode solution was comparable to the 48

mode solution generated from 100 snapshots. Finally, notice that the POD/ROM got worse

when too many modes were included. The modes corresponding to very low eigenvalues

captured dynamics due to machine numerics, not flow structures. When these modes were

included, the solution was polluted with modal errors. Instabilities arose that prevented

the solution from reaching steady state.
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B.2 Replicating a 30 Second Low Dynamic Flow Evolution

To illustrate that spatial discontinuities are of no consequence to the number of

modes, a POD/ROM was generated to replicate a low dynamical trajectory of shocked

flow solutions. Specifically, the last 30s of the 100s flow evoution was replicated. This

comprised a sequence of functions that was nearly converged to the steady state value.

The low dynamical trajectory is depicted notionally in Figure B.2. For this case there was

X1

ψ100
1

ψ70
1

Figure B.2 100s Density Function Flow Evolution

no formation of a shock from a smooth initial condition. Also, the movement of the shock

was limited to small motions in the back of the shock. The range of solutions for density

were obtained from the full order solution and are shown in Figure B.3.

Several POD/ROMs were generated from a set of 30 evenly spaced snapshots (1s

intervals of the full system model). The results are presented in terms of the three error

norms defined in equations (B.1), (B.2) and (B.3). Performance in terms of the Lmax error

norm is presented in Table B.4, performance in terms of the L2err norm is presented in

Table B.5, and performance in terms of the L2err norm is presented in Table B.6.

An exceptionally good representation of the full order trajectory was obtained using

only 9 total modes (3 modes for ρ, 3 modes for ρu, and 3 modes for Et). The largest Lmax

for any fluid variable was only 1.4% indicating that there was no place or time that the

reduced order model did not closely match the true solution. The largest L2err was only
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0.707%, indicating that spatial features of the solution were also closely tracked for all

time. The small value of Lterr (about 0.44%) supports this conclusion as well. Also, a very

useful reduced order model (average errors < 5%) was generated from even fewer modes

(2 modes for ρ, 3 modes for ρu, and 2 modes for Et for a total of 7 degrees of freedom).

This is in stark contrast to the 58 modes required for exceptionally accurate repro-

duction of the high dynamical trajectory. The fact that both cases involved flow fields with

discontinuities proves conclusively that the number of required modes is not intrinsically

increased for shocked flows. The presence of the discontinuity was readily recreated with

only the first three modes. The smooth portions of the flow field were recreated with three

modes as well. Unlike sine or cosine series, the POD/ROM identified discontinuous modes

to represent discontinuous flow fields. A very few of these modes were adequate in rep-

resenting the full order solution. The spectral methods attempt to recreate discontinuous

flow fields with smooth basis functions (complex exponentials, Chebyshev polynomials,

and Legendre polynomials) (20). A great many modes are required to accurately recreate

a discontinuous function from a set of smooth functions.
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B.3 Summary of Key Insights

The ability of POD/ROM to replicate two shocked flow evolutions was presented; one

characterized by high dynamics, and another with lower dynamics. POD almost perfectly

recreated the low dynamic case using only 3 degrees of freedom per fluid variable. Unlike

traditional spectral methods, the existence of a discontinuity in the flow solution did not

increase the number of modes required for accuracy relative to smooth flow field solutions.

In addition, the POD/ROM could very accurately reproduce a flow evolution involv-

ing a transition from smooth to shocked flow, including a shock with significant movement.

Recreating this high dynamical case required more modes for accurate representation (15

modes per fluid variable). This was roughly 5 times greater than the low dynamical case.

The spatial features of a particular flow field did not determine the number of modes

for an accurate POD/ROM. Rather, the variety of vectors making up the flow evolution

determined the required number of modes. The high dynamical cases required more modes

regardless of the presence or absence of shocks.
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Table B.1 Maximum Error Norm for 100s Trajectory
Evenly Spaced Modes Retained Highest Lmax Highest Lmax Highest Lmax
Snapshots ρ/ρu/Et ρ ρu Et

(time occurred) (time occurred) (time occurred)

100 22/21/22 2.7584% 0.5519% 2.2318%
(24s) (29s) (24s)

100 20/19/19 1.1553% 0.3522% 0.9562%
(24s) (13s) (24s)

100 15/15/15 8.6998% 2.0238% 7.1013%
(29s) (29s) (30s)

100 12/15/12 13.203% 3.8913% 10.729%
(11s) (59s) (11s)

100 12/12/15 31.397% 6.5045% 26.507%
(20s) (22s) (20s)

100 12/12/12 43.099% 7.2527% 38.347%
(23s) (22s) (23s)

100 10/12/10 26.81% 14.677% 21.609%
(18s) (20s) (18s)

100 8/12/8 56.644% 19.376% 51.236%
(81s) (14s) (79s)

100 6/9/6 60.234% 14.259% 55.408%
(29s) (23s) (29s)

100 5/11/5 73.717% 29.075% 67.137%
(100s) (47s) (82s)

100 4/9/4 72.542% 30.341% 65.095%
(36s) (37s) (36s)

50 20/19/19 63.577% 34.673% 59.638%
(25s) (2s) (25s)

50 16/16/15 16.22% 4.5572% 12.6%
(41s) (2s) (41s)

50 12/15/12 27.035% 5.8349% 23.261%
(17s) (16s) (17s)

50 10/12/10 21.7% 11.303% 17.359%
(5s) (12s) (5s)

50 8/12/8 57.314% 25.913% 51.756%
(84s) (23s) (83s)
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Table B.2 L2 Error Norm for 100s Trajectory
Evenly Spaced Modes Highest L2err Highest L2err Highest L2err
Snapshots Retained ρ ρu Et

ρ/ρu/Et (%/t occurred) (%/t occurred) (%/t occurred)

100 22/21/22 4.524× 10−3 2.1744× 10−3 0.010065
(0.73036%/24s) (0.37295%/1s) (0.60986%/24s)

100 20/19/19 2.0452× 10−3 2.3548× 10−3 4.8592× 10−3

(0.33018%/24s) (0.40389%/1s) (0.30319%/1s)

100 15/15/15 0.017119 6.8873× 10−3 0.038778
(2.6776%/30s) (1.2064%/2s) (2.2926%/30s)

100 12/15/12 0.054925 0.018608 0.1166
(9.022%/53s) (3.624%/11s) (7.3357%/53s)

100 12/12/15 0.10109 028505 0.22828
(16.579%/63s) (5.6149%/13s) (14.248%/63s)

100 12/12/12 0.11507 0.035238 0.2512
(18.722%/23s) (6.9411%/13s) (15.332%/23s)

100 10/12/10 0.12285 0.06426 0.30474
(19.559%/26s) (13.011%/21s) (18.237%/26s)

100 8/12/8 0.1669 0.092861 0.38962
(29.068%/15s) (18.54%/16s) (23.885%/79s)

100 6/9/6 0.24601 0.10474 0.60358
(40.527%/56s) (20.255%/10s (37.992%/54s)

100 5/11/5 0.55191 0.21771 1.3459
(85.903%/33s) (41.623%/45s) (79.559%/32s)

100 4/9/4 0.50537 0.22961 1.2282
(78.857%/31s) (44.147%/38s) (72.736%/29s)

50 20/19/19 0.44107 0.30661 1.1197
(77.022%/8s) (53.706%/2s) (73.689%/3s)

50 16/16/15 0.029168 0.026102 0.064676
(4.5938%/40s) (4.7239%/4s) (3.9095%/40s)

50 12/15/12 0.055187 0.033961 0.12376
(9.4692%/17s) (5.8249%/1s) (7.9841%/17s)

50 10/12/10 0.095253 0.050962 0.2379
(15.378%/24s) (10.281%/19s) (14.414%/24s)

50 8/12/8 0.029179 0.015646 0.15092
(0.73036%/39s) (0.73036%/23s) (0.73036%/83s)
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Table B.3 Time Integrated L2 Error Norm for 100s Trajectory

Evenly Spaced Modes Retained
∫ 100s
0 L2err(t)dt

∫ 100s
0 L2err(t)dt

∫ 100s
0 L2err(t)dt

Snapshots ρ/ρu/Et ρ ρu Et
100 22/21/22 0.17638 0.076261 0.44535

(0.28764%) (0.14796%) (0.27714%)

100 20/19/19 0.079291 0.051073 0.18187
(0.12931%) (0.099092%) (0.11318%)

100 15/15/15 0.81332 0.30912 1.7115
(1.3264%) (0.59975%) (1.0651%)

100 12/15/12 3.0654 0.8674 4.7198
(4.999%) (1.6829%) (2.9372%)

100 12/12/15 4.4937 1.5951 10.176
(7.3284%) (3.0948%) (6.3324%)

100 12/12/12 3.7507 1.1607 7.7914
(6.1167%) (2.252%) (4.8486%)

100 10/12/10 3.8755 1.9798 10.105
(6.3201%) (3.8413%) (6.2884%)

100 8/12/8 9.0159 3.1343 21.409
(14.703%) (6.0812%) (13.323%)

100 6/9/6 15.703 4.031 38.065
(25.608%) (7.821%) (23.688%)

100 5/11/5 38.633 15.087 93.079
(63.002%) (29.272%) (57.924%)

100 4/9/4 22.67 7.0984 54.925
(36.969%) (13.772%) (34.18%)

50 20/19/19 17.437 5.8231 43.06
(28.436%) (11.298%) (26.797%)

50 16/16/15 1.2304 0.52634 2.8118
(2.0064%) (1.0212%) (1.7498%)

50 12/15/12 2.1439 0.91791 4.8452
(3.4962%) (1.7809%) (3.0152%)

50 10/12/10 3.1254 1.4876 8.1207
(5.0969%) (2.8863%) (5.0536%)

50 8/12/8 10.291 3.7 24.153
(16.783%) (7.1787%) (15.03%)
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Table B.4 Maximum Error Norm for 30s Trajectory
Evenly Spaced Modes Retained Highest Lmax Highest Lmax Highest Lmax
Snapshots ρ/ρu/Et ρ ρu Et

(time occurred) (time occurred) (time occurred)

30 12/12/12 0.034373% 0.0094979% 0.025235%
(17s) (17s) (17s)

30 10/10/10 0.04179% 0.012389% 0.031264%
(10s) (10s) (10s)

30 8/8/8 0.029745% 0.023077% 0.028837%
(23s) (2s) (23s)

30 6/6/6 5.9281% 1.2139% 1.711%
(30s) (30s) (30s)

30 4/4/4 3.383% 0.92973% 2.5574%
(15s) (15s) (15s)

30 3/3/3 1.4009% 0.60551% 1.3872%
(6s) (20s) (6s)

30 2/3/2 6.6826% 8.098% 5.1885%
(14s) (30s) (13s)

Table B.5 L2 Error Norm for 30s Trajectory
Evenly Spaced Modes Highest L2err Highest L2err Highest L2err
Snapshots Retained ρ ρu Et

ρ/ρu/Et (%/t occurred) (%/t occurred) (%/t occurred)

30 12/12/12 4.7262× 10−5 2.1675× 10−5 1.1173× 10−4

(0.007618%/17s) (0.004204%/17s) (0.006931%/29s)

30 10/10/10 6.8512× 10−5 3.485× 10−5 1.5837× 10−4

(0.011015%/10s) (0.0067868%/10s) (0.0098241%/29s)

30 8/8/8 3.3076× 10−4 1.2532× 10−4 7.0777× 10−4

(0.053195%/13s) (0.024352%/13s) (0.043444%/13s)

30 6/6/6 0.059031 0.014547 0.062934
(9.5929%/30s) (2.8251%/30s) (3.9047%/30s)

30 4/4/4 6.472× 10−3 3.1211× 10−3 0.01293
(1.0405%/10s) (0.60821%/9s) (0.7928%/10s)

30 3/3/3 4.3664× 10−3 1.9671× 10−3 0.010925
(0.70669%/23s) (0.38153%/17s) (0.67518%/22s)

30 2/3/2 0.056079 0.021202 0.16509
(9.1131%/30s) (4.1177%/30s) (10.243%/30s)
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Table B.6 Time Integrated L2 Error Norm for 30s Trajectory

Evenly Spaced Modes Retained
∫ 30s
0 L2err(t)dt

∫ 30s
0 L2err(t)dt

∫ 30s
0 L2err(t)dt

Snapshots ρ/ρu/Et ρ ρu Et
30 12/12/12 8.1218× 10−4 4.1998× 10−4 2.1268× 10−3

(0.0043714%) (0.0027224%) (0.0043674%)

30 10/10/10 1.1708× 10−3 6.5283× 10−4 2.9818× 10−3

(0.0063015%) (0.0042317%) (0.0061233%)

30 8/8/8 3.5855× 10−3 1.7391× 10−3 8.0705× 10−3

(0.019298%) (0.011273%) (0.016573%)

30 6/6/6 0.34564 0.087781 0.37201
(1.8603%) (0.56901%) (0.76395%)

30 4/4/4 0.091443 0.046124 0.22802
(0.49217%) (0.29898%) (0.46825%)

30 3/3/3 0.083169 0.036043 0.20119
(0.44764%) (0.23364%) (0.41315%)

30 2/3/2 0.49607 0.23757 1.5136
(2.67%) (1.54%) (3.1083%)
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Appendix C. Rocket Nozzle Flow Control Using a Reduced Order Fluid Dynamics

Model

This appendix documents an additional application that was investigated during the course

of this dissertation research. The manuscript comes from an accepted conference paper

that is currently in review with the AIAA Journal of Guidance, Navigation and Control.

Nomenclature

A(x) Nozzle cross sectional area, m2

A Jacobian of flux terms E in Euler equations

E Vector of X-axis fluxes

ET Total energy, Joules

G(t) System dynamic response function

H Numerical flux function from Roe’s scheme

ṁ Mass flow rate, kg/sec

N,M Dimensions of reduced order mapping matrix

nx Total number of grid points in the nozzle

P Pressure, Pa

Rg Ideal gas constant, J/kg · K
R Transformation matrix

R() Right-Hand-Side or nonlinear portion of

Euler equations

t Time, sec

S Matrix of flow field data, or snapshots

T Temperature, K

T (t) Thrust, Newtons

u(t) Vector of control deflections

u Fluid velocity at a single spatial

location in the flow, m/s

U Vector of conserved flow variables

V Matrix of singular values of S
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w Represents any single fluid variable

x Spatial coordinate along axis of nozzle, m

x(t) Spatial state vector of fluid variables

X Vector of X-axis positions x in nozzle, m

Z Vector of forcing terms for quasi 1-D nozzle

Euler equations

γ Ratio of Specific Heats

Λ Matrix of eigenvalues

λ Ratio of time and spatial step size

ρ Density, kg/m3

Ψ Reduced order mapping matrix

Subscripts

0 Initial value

amb Ambient

c Reference signal for control

i Index to increment discrete time steps for

controller time scale

j Index to increment discrete spatial steps

OL Open loop

opt Optimal

stag Stagnation

t Time derivative

x Spatial derivative

Superscripts

∗ Value at nozzle throat

n Index to increment discrete time steps

for fluid time scale
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C.1 Introduction

Fluid dynamics are governed by a set of Partial Differential Equations (PDEs) known

as the Navier-Stokes (NS) equations (45). Since current control synthesis methods almost

exclusively tailored for Ordinary Differential Equations (ODEs) in time as plant models,

fluids/controls research currently being reported in the literature approximates the NS

equations with ODEs. These ODEs are carefully designed to capture the critical dynam-

ics in the flow field, yet facilitate a tractable control synthesis via conventional methods

(60, 61). While this approach has yielded results for specific flows (60, 61), few control

applications have been demonstrated.

Fluid dynamics modeling is problematic because no general solution to the NS equa-

tions is known to date. While there are closed form solutions to a handful of flow fields,

most of these solutions require assumptions that are not valid for problems of interest.

In the past, aerodynamicists used these closed form solutions to educate themselves on

the behavior of the NS equations, while actual aerodynamic design relied on wind tunnel

testing. More recently, the wind tunnel has been augmented by the use of Computational

Fluid Dynamics (CFD). CFD creates a computational wind tunnel where the complete

NS equations are solved via computer based numerical approximation. This enables the

prediction of stability and control derivatives.

This paper pursues the synthesis of controllers for high-speed, compressible fluid

flow problems using on-line CFD based solvers to model the fluid dynamics, and on-line

calculations/optimization algorithms for on-line control design. Most flow problems require

very large (high order) CFD models to capture the dynamics of the flow. These CFD

models are so large that design optimization via iterative search algorithms is infeasible in

real time. The use of Proper Orthogonal Decomposition (POD) for order reduction of CFD

flow field solutions was introduced in the mid 1990s. This method has been successfully

applied to low-speed, non-linear aeroelastic problems (3). POD is a promising tool for use

in model based control, and a few low-speed flow control applications with POD have been

recently reported in the literature (62, 11, 63, 64).
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This paper develops the controller synthesis strategy for a one-dimensional model

problem involving high-speed compressible fluid flow. A CFD code is used as the system

dynamics model. The dynamics model is integrated into an optimization algorithm, and

an open-loop optimal controller is synthesized for the full order system. Next the reduced

order fluid model is developed using POD, and a sub-optimal, model-based, open-loop

controller is constructed via the POD Reduced Order Model (ROM) of the plant. The

performance of the full order and POD ROM-based controllers is compared.

C.2 Problem Statement

In this paper, a thrust controller for a liquid fuelled rocket engine with a variable

throat area and adjustable propellant flow rate is designed. The rocket engine dynamics

are modeled with a quasi 1-D nozzle flow, which is a compressible, 1-D, inviscid flow field.

The 1-D nozzle assumption provides accuracy within about 6 percent of a higher order

analysis (65). Flow control is accomplished by changing the nozzle geometry, which entails

changing the nozzle throat area and thereby the fuel mass flow rate. This novel control

concept has been tested on experimental rockets (65).

This problem is treated with a numerical method applicable to complex problems

with no known analytical solution, even though the analytical solution for quasi 1-D nozzle

flows is well known and provided in gas dynamics textbooks (66). This general numerical

method is intentionally demonstrated on a problem with a known solution to allow for

verification of the solution.

The relevant parameters for the chemical rocket engine were taken from the open

literature (65). The rocket engine was designed for an optimal thrust of 5000 Newtons at

25, 000 meters of altitude. This yielded the following specifications.

A∗ = 13.87cm2

Aexit = 612.5cm2

ṁ = 1.919
kg

sec

uexit = 2605
m

sec
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The chamber conditions are as follows.

Pstag = 2.068MPa

Tstag = 2800K

γ = 1.3

Rg = 355.4
J

kg ·K

The rocket engine operates on a simulated ascent trajectory between 10, 000 meters and

25, 000 meters of altitude. The simplified trajectory entails a linear decrease in ambient

pressure over a 120 second flight time as in equation (C.1).

Pamb = Altitude ·
{

(P25,000 − P10,000)
(25, 0000− 10, 000)

}
(C.1)

The rocket’s thrust is given by equation (C.2) (67),

Thrust = ṁuexit + (Pexit − Pamb)Aexit . (C.2)

Without any control input, the nominal thrust along this ascent trajectory is shown in

Fig. C.1.
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Figure C.1 Thrust From Unmodified Rocket
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A schematic of the rocket nozzle is shown in Fig. C.2. The control only affected

the nozzle geometry near the throat (shaded region in Fig. C.2), while most of the nozzle

geometry (especially the nozzle exit area) remained fixed. No shock was allowed to stand

in the nozzle, resulting in isentropic flow throughout the nozzle. Hence the isentropic flow

relations yield the analytical solution for this flow field (66). The flow in the nozzle was

P0, T0 very high,
and fixed

M=1

M>1M<1

Fuel Flow

Xthroat Xexit

P0

PAmbient

Pressure
In

Nozzle 

Ambient
Conditions

Slightly 
Underexpanded Case

Overexpanded Case

Optimum Case

Shock Wave

Expansion Wave

Figure C.2 Rocket Engine Schematic

constant in the uncontrolled rocket, and the increase in thrust throughout the trajectory

(Fig. C.1) was due only to the drop in ambient pressure relative to the fixed exit exhaust

pressure. Certain launch vehicles need to restrict this increase in thrust with altitude. Such

would be the case when launching a g-sensitive payload into orbit. For example, the space

shuttle uses fuel mixture ratio control in the combustion chamber of the main engine to

restrict launch dynamics to less than 3g (68). For this model problem, an arbitrary thrust

profile was selected to be tracked by the controller. The thrust level directly determines

the rockets acceleration. Digital control was envisioned and the discrete time variable is

ti, i = 1, 2, . . . The control problem is described as follows.

The reference command signal is Tc:

Thrust Desired = Tc(ti)
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The control variable is A∗c :

Nozzle Throat Area = A∗c(ti)

The nozzle throat area and mass flow rate are related by an equality constraint which

enforces the choked flow condition at the nozzle throat. This relationship is given by

the 1-D quasi-stationary isentropic flow relation (shown below in equation (C.3)) (67).

Therefore, nozzle throat area is the only control variable.

ṁc(ti) = A∗c(ti)

{
P0√
RT0

√
γ

(
2

γ + 1

)(γ+1)/2(γ−1)}
(C.3)

The states x(ti) at time ti are a function of the x-axis position in the nozzle X at nx

discrete locations,

x(ti) =




ρ(X, ti)

ρ(X, ti) · u(X, ti)
ET (X, ti)




X = {x1, x2, . . . , xnx} .

Here ρ is density, ρu is x-direction momentum, P is pressure, and ET is total energy per

unit mass. The output variable of interest (assuming no shock wave exists in the nozzle)

is,

Thrust = T (ti) ,

and the disturbance signal is,

Ambient Pressure = Pamb(ti) .

For a pre-specified nozzle geometry, the system dynamics are given by,

x(ti +∆t) = f{x(ti);A∗c(ti), ṁ(ti)} (C.4)

x(t0) = x0 .
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The state transition function f is obtained from the inviscid flow equations (also

known as the Euler equations). Each time step requires a function call to a CFD algorithm

to propagate the state from one time to the next. The states for this system are arranged

into a single column vector as shown in Fig. C.3. Notice that the disturbance did not affect

the system dynamics since the flow at the nozzle exit was always supersonic. Changes in

ambient pressure outside the nozzle cannot propagate upstream in a supersonic flow. The

disturbance affects the overall thrust accordingly. Thus, the output variable is

T (ti +∆t) = ṁuexit(x(ti +∆t)) + (Pexit(x(ti +∆t))− Pamb(ti +∆t))Aexit , (C.5)

where uexit and Pexit are functions of the state vector x.
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Figure C.3 State Vector of Flow Variables

The CFD fluid model used an explicit Roe scheme solver. The CFD flow model

spatially discretized the 1-D nozzle into a grid along its length. For nx grid points, there

were nx values of each flow variable computed in the model. The number of grid points

was determined by the accuracy and stability of the CFD algorithm. For this problem,

the scheme yielded a very nice solution for the convergence divergent nozzle problem with

250 grid points. Therefore, the state vector for the full order system had dimension 750.
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C.3 Controller Synthesis

Perfect a priori knowledge of the “disturbance” (e.g. the ambient pressure profile) ia

assumed along the trajectory of the rocket, and an open-loop optimal controller ia pursued

for this problem. The open-loop control system is shown in Fig. C.4. Equation C.6 shows

the open-loop controller signal uOL(ti) which is a function of the commanded thrust, the

ambient pressure, and time (shown as GOL(ti)).

Dynamic System
)( itT

Controller

)( iOL tu

Reference 
Signal

Tc(ti) at time ti

exitiambiexitiexitiexiti

iicii

AtPtPtuttT

tmtAtxfttx

⋅−+⋅=

=∆+
⋅

))()(()()()(

)}(),();({)(
2

*

ρρρρ

)( iamb tP

)()( iOLiOL tGtu =

Figure C.4 Open Loop Control Diagram

uOL(ti) =


 A∗c(ti)

ṁ(ti)


 (C.6)

GOL(ti) = g{ti, Tc(ti), Pamb(ti)}

Finally, the flow field prediction and the myopic control evaluation can be separated in

time. The considerable time scale separation between the flow field and actuator response

times mean that the actuator dynamics will not affect the stability of the solution, so they

are left out for simplicity. The flow field reaches steady state between each time step for

the control signal calculation/optimization. Strictly speaking, an otherwise steady flow

field (time independent flow field) is disturbed by a step change in geometry (A∗ and the

portion of the nozzle very near the throat) at each discrete value of ti in the open-loop

simulation. The frequency content of the command signal Tc(ti) and the disturbance signal

Pamb(ti) is low compared to the speed at which disturbances propagate through the flow
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field, l
c , where l is the length of the nozzle and c is the reference speed of sound. The

CFD code is used to perform integration in time and a new stationary (steady state) one-

dimensional flow field is quickly established. This new flow field is used to predict the

thrust produced with the new A∗ geometry. The polarity is obvious: An increase in A∗

produces an increase in thrust, while a decrease in A∗ produces a decrease in thrust. This

physical insight offers an easy interpolation process for matching the predicted (calculated)

thrust to the commanded thrust Tc. The nonlinear eq. (C.5) is solved when ṁ(A∗c) is found

such that T matches Tc. This procedure encapsulates the myopic optimization algorithm

used to synthesize the optimal controller. The algorithm is outlined in Fig. C.5.

Optimization Loop

Tdesired= from thrust profile

Pambient= from pressure profile

∆T = Tdesired- Tactual

Initialize Var iables
Α∗ (t1)= Α∗

init

Update State via Call to 
CFD Model

If ∆T > threshold
adjust A*

Else
 Αc

∗ (t1)= Α∗

 Go on to next step

Figure C.5 Solution Process
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C.4 Fluid Model

The Euler equations are used to approximate inviscid flow fields. For unsteady one-

dimensional flow in a duct of variable (but known) cross-sectional area, the Euler equations

(in conservation form) reduce to the equation set given below (52).

Ut + Ex = Z

U =




ρA

ρuA

ρETA


 (C.7)

E =




ρuA

(ρu2 + P )A

(ρET + P )uA


 (C.8)

Z =




0

−P dA
dx

0


 (C.9)

The nozzle geometry for the unmodified part of the nozzle was selected to be a quadratic

area profile (69) whereA∗Design was the throat area for the original nozzle design (13.87cm2),

and x∗ was the fixed x location of the minimum nozzle area, (5.5456cm).

A(x) = A∗Design + 2.2(x− x∗)2

The quadratic area profile was modified to include a variable throat area as shown in Fig.

C.6. This was accomplished by inserting a circular ball of radius r, centered on the fixed

x∗, into the flow field. The ball was lowered into the flow field so that the lower most

edge of the ball results in a nozzle throat radius whose area (A = πR2) was the throat

area commanded by the controller (A∗c). A region near the nozzle throat was created

(denoted by xb and xf) where the original nozzle configuration was linked to the ball via

a line segment that connects the nozzle wall to the nearest tangent point on the ball. This
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ensured a smooth surface in the vicinity of the nozzle throat. The nozzle entrance and

exit were also extended with a constant area section to ensure no large flow gradients were

passed through the boundary. This aided in convergence from poor initial conditions.

Nozzle
Radius

X direction
x*

Inlet

Exit

xfxb

π

2** )(2.2
)(

xxA
xr Design −+

=

Ball Diameter << r(x*)

π

*
* )( DesignA

xr =

Figure C.6 Variable Throat Nozzle Geometry

Notice that equation (C.9) requires spatial differentiation of the nozzle area, but the

nozzle area function lacks smoothness at xb, xf , and at the transition to the inlet and exit

constant area sections. This is accommodated by numerically approximating the spatial

derivative of the cross-sectional area via a second order central difference. This smoothed

the area function and provided good results.

Roe’s scheme was used to solve numerically this system of PDEs. Roe’s scheme

for the Euler equations is a finite-difference scheme that approximates the flux terms at

each discrete grid point with an averaging technique using information at the surrounding

points in the flow. See Tannehill et al (45) for a detailed formulation of the Roe’s scheme.

This finite-difference scheme was used to explicitly solve the entire flow field by marching

a known initial condition in time via small time steps. A steady state flow solution was

achieved when the maximum norm of the difference between flow solutions at adjacent

time steps was less than a small error threshold (point wise convergence).

C-12



For the quasi 1-D nozzle problem, the boundary conditions had to be set at the

nozzle’s inlet and exit. By analyzing the characteristics of the governing flow equations, the

appropriate number of terms to specify were determined. The inlet represents propellant

flow out of the combustor, and was subsonic. It was appropriate to specify two of the

three solution variables for this part of the flow field, which consisted of subsonic flow.

Momentum and total energy were specified, letting the density term at the inlet be adjusted

by the flow solution. Since a shock was not allowed to form in the nozzle, the exit flow

was always supersonic and no information from the ambient environment affected the flow

field. The exit condition was simply an outflow of the last grid point’s flow solution. It

was convenient to extrapolate extra grid points beyond the nozzle inlet and exit. The

flow values at the extrapolated inlet and exit grid points were computed using a one-sided

second derivative approximation for the velocity variable which was set equal to zero to

enforce smoothness in the extrapolated boundary points.

Finally, Roe’s scheme loses its dissipation when the eigenvalues of the Roe averaged

matrix go through zero. As a result, a non-physical expansion shock can result in the solu-

tion, which is indeed the case for the convergent-divergent nozzle solved via Roe’s scheme.

An expansion shock will form at the nozzle throat unless an entropy fix is introduced. To

accomplish this, the eigenvalues in |Λ̂| were checked, and replaced with a finite value ε,

when they were smaller than a certain threshold (45). The value of this threshold was

sensitive to grid size.

C.5 Reduced Ordered Modeling

Reduced order modeling of the flow field was accomplished via Proper Orthogonal

Decomposition. A non-Galerkin approach was used (3). The development of POD ROM

for inviscid flow through a quasi 1-D nozzle, along with a performance analysis has been

recently completed (70). Consider the column vector of flow variables shown in Fig. C.3.

This vector represents the state variable in time, and was governed by equation (C.4). For

order reduction of the flow field, the state vector was decomposed into the conserved flow

variables, which yielded three vectors (one for density, one for momentum and one for total

energy). Let the vector w(t) represent any one of these three flow variable vectors, then
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the Roe’s scheme flow solver can be considered as a nonlinear state transition function R

acting on w(t). Notice that for w(t), t now represents time at the fluid time scale.

dw

dt
= R(w) (C.10)

A linear transformation was sought between the full order state and a reduced order

state ŵ as follows.

w(t) = Ψ · ŵ(t)

Ψ was constructed by collecting observations of the full order state vector at different

time intervals throughout the integration of the full order Roe scheme solution. These

observations or “snapshots” were collected prior to reaching steady state, since linearly

independent snapshot vectors were required. For simplicity, a specific throat area config-

uration was selected. With this configuration fixed, snapshots were generated that were

used to model every flow field of interest to the optimization algorithm (including those

generated via different throat area geometries). Collecting snapshots from a variety of

throat area geometries proved to be unnecessary for this model problem. The parameter

space of interest was the small throat area changes required to affect control for this prob-

lem. The variations in the nozzle flow field across this parameter space were small enough

to be reasonably represented by the flow structures from a single set of snapshots.

M total snapshots (usually O(10) or less) of the full order state vector length N

were collected. These “snapshots” were compiled into a N ×M matrix S, known as the

snapshot matrix. POD guaranteed that each of the three reduced order flow field variables

would yield an optimally convergent representation of the full order variable if the mapping

function Ψ was developed as follows.

STS · V = V · Λ

Ψ = S · V
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Here V is the matrix of eigenvectors of STS, and Λ is the corresponding diagonal matrix

of eigenvalues. Which was used to yield the following reduced order mapping.

w(t) = S · V · ŵ(t)

ST · w(t) = ST · S · V · ŵ(t)

ST · w(t) = V · Λ · ŵ(t)

ŵ(t) = Λ−1 · V −1 · ST · w(t)

So inserting this relationship into equation (C.10) and applying a forward difference ap-

proximation, the flow model produced the following reduced order flow solver,

dw

dt
= R(w)⇒ wn+1 = wn +∆t ·R(w) ,

which becomes

ŵn+1 = ŵn +∆t · Λ−1 · V −1 · ST ·R(S · V · ŵn) . (C.11)

Thus, the POD ROM reduced each flow variable from N to M , where M was the

number of snapshots. Each reduced order variable represented a solution mode, whose

contribution to the full order solution was of order with the magnitude of the corresponding

eigenvalue. No modal truncation was employed in this implementation. The method of

order reduction in equation (C.11) relied on the full order function evaluation at each

flow field integration step. As such, the order of each integration step was not actually

reduced. However, this reduction technique can greatly increase the time step size allowed

for stability. Therefore, the total number of time steps required for the explicit time

accurate solver to reach steady state was significantly reduced.

For implicit schemes, where time step size does not affect stability, the governing

equations must be projected into the reduced order space (say via a Galerkin projection) to

realize a computational benefit from POD ROM. For a complete derivation and discussion

of POD as it pertains to fluids, see the text by Lumley et al (19).
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C.6 Results

For the model problem, a controller was designed to maintain a constant 5000N

thrust as the rocket flies through the simplified trajectory shown in Fig. C.1. The unmod-

ified rocket was designed for optimal performance of 5000N at 25, 000m. The controller

was designed to maintain 5000N thrust throughout the entire trajectory (the target thrust

was actually 5047N). The nozzle required a larger mass flow rate and nozzle throat area

at the lower altitudes to track the thrust profile. In exercising the optimization algorithm,

errors were allowed to go uncorrected within ±5N , which was the convergence tolerance.
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Figure C.7 Optimal Controller Thrust Performance

First consider the controller synthesized from the full order CFD plant model: the

controller synthesized using the full order “plant” produced the results shown in Fig.

C.7. Clearly the optimal controller had no problem maintaining thrust within the 5N

threshold. As the rocket ascended and the pressure dropped, the tendency was for the

thrust to increase. Once the increase broke the 5N threshold, the controller commanded

some increment in throat area that brought the thrust down well within limits. This process

of a naturally creeping increase in thrust, with a periodic controller initiated decrease in

thrust produced the variations shown in Fig. C.7. These dynamics resulted in a slightly

biased thrust error, which is shown in Fig. C.8. The bias and standard deviation were
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small (less than 1%), and deemed insignificant for the model problem. Of course the

solution algorithm could be tuned to provide smoother results, or use a smaller threshold

to reduce the bias. The controller actuator commands are shown in Fig. C.9. These show
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Figure C.8 Optimal Controller Thrust Error

the commanded throat area (A∗c), the resulting nozzle throat radius, and the commanded

propellant flow rate. The low bandwidth of the control signal is apparent. Thus, “spill

over” is avoided.

The controller started with a larger throat area and mass flow rate, and as the

flight progresses to higher altitudes these were reduced via actuator commands. At the

terminal point of the trajectory, the controller commanded the throat area and flow rate

for the optimum 5000N nozzle at 25, 000m altitude (with a fixed divergent section and exit

area). Since the disturbance and desired thrust were linear functions in time, the resulting

controller commands were also linear. Note that the commanded actuator dynamics only

required about a 7% change in throat geometry, and a 14% change in propellant flow rate

to achieve the desired performance.

For problems where the full order model is too large to iterate through thousands of

function calls in real time, the performance of a controller synthesized from a reduced order

model must be considered. A reduced order model was generated from four snapshots of
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Figure C.9 Optimal Controller Actuator Commands

the full order system state vector, taken at even intervals as the flow solver progressed

from initial condition to steady state. The snapshots were obtained from the full order

flow solver explicit time integration with the nozzle geometry required at 20 seconds into

the flight trajectory (approximate). These four snapshots produced a reduced order model

with four modes for each of the three conserved flow variables. This resulted in a total

state dimension of twelve. The twelve modes were applied to the unsteady equations as

described previously.

The reduced order plant was inserted into the optimization algorithm to replace the

full order function call, and the algorithm was rerun to generate a sub-optimal controller.

The sub-optimal controller thrust performance, based on the full order plant, is shown in

Fig. C.10. The optimization algorithm, based on the reduced order plant, introduced a

slowly growing error in thrust. The error is shown in Fig. C.11. The mean error for the

sub-optimal controller was 21.8N which is a 0.43% error.

Reduced order model accuracy can be adjusted to achieve desired performance goals

by varying the number of modes and dispersion of snapshots (3). These improvements

were not pursued since the performance shown in Fig. C.11 was adequate to demonstrate

the controller strategy. For future implementations involving quasi-steady flow dynamics,
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Figure C.10 Sub-Optimal Thrust Performance

a variety of steady state analysis approaches could be used instead of time accurate in-

tegration. It has been shown that steady analysis using POD ROM is both efficient and

accurate (21). For a steady analysis, steady state flow solutions across the parameter space

could be blended (48, 71) into a larger set of snapshots. This approach to data collection

would cover a wider parameter space than simply using time integration at one parameter

value. In such an implementation, lower energy modes should be truncated to keep the

dimensionality small.

C.7 Conclusions

A sub-optimal controller for a high-speed, compressible fluid control problem, al-

beit without shocks, has been demonstrated using proper orthogonal decomposition based

reduced order computational fluid dynamics models. Both an optimal and sub-optimal

controller were generated for a quasi one-dimensional supersonic convergent-divergent noz-

zle with varying backpressure. The optimal controller, generated from a full order plant,

tracked the desired thrust profile within an arbitrarily small threshold. The reduced order

model yielded a sub-optimal controller that replicated the optimal controller with 0.43%

mean error. The reduced order plant had a state dimensionality of 12, versus the full order
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Figure C.11 Sub-Optimal Thrust Error

state dimensionality of 750, which is about a 62 to 1 order reduction. Proper orthogonal

decomposition based reduced order models could realize much greater order reductions for

problems with full order models requiring higher dimensionality. For example, order reduc-

tions for two-dimensional inviscid problems are typically 1000 to 1, and order reductions

would be much greater still in three-dimensions.
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Appendix D. Validation of Two-Dimensional Euler Code

The steady and unsteady performance of the 2-D, inviscid, flow solver used as the full-

system model for this research was validated through comparison of solver results with wind

tunnel data, theory, and results in the literature. Wind tunnel data for subsonic channel

flow over a five degree bump was used to validate the solvers subsonic and transonic perfor-

mance. Additional results from a widely used production code, called COBALT, were used

to identify differences between viscous and inviscid results. The steady state supersonic

flow solution over a 15 degree wedge was compared with the exact inviscid solution to val-

idate the solver’s supersonic performance. Next, validation of the transpiration boundary

condition is addressed. The aeroelastic panel response is validated by comparison with

results from the literature for transonic free stream conditions.

D.1 Subsonic and Transonic Validation Cases

Figure D.1 Grid for Subsonic and Transonic Validation

Subsonic and transonic wind tunnel data was obtained from the literature, consisting

of pressure coefficient across the surface of a bump in a channel at varying free stream Mach

numbers (72). The bump was a circular arc profile with a height to chord length ratio of

0.05. The channel and bump geometry were taken from (73) and replicated in the 2−D
Euler solver. The solver was run to steady state at the Mach numbers corresponding to

the wind tunnel data. The computational grid for this problem is shown in Figure D.1.

The upper and lower surfaces of the grid represented solid boundaries. The left

vertical boundary was subsonic free stream inflow, while the right vertical boundary was

subsonic outflow. Three subsonic cases were compared, using free stream Mach numbers
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Figure D.2 Subsonic Surface Pressure

of 0.226, 0.519, and 0.680. Pressure coefficient comparisons across the bump surface for

these three cases are shown in Figures D.2a, b, and c. Reasonably close adherence to wind

tunnel data is shown for the subsonic case. Differences between solver and wind tunnel Cp

were attributed to viscous effects not modeled by the inviscid Euler code. Specifically, the

wind tunnel flow field experienced a small amount of separation on the aft portion of the

bump, disrupting otherwise symmetric streamlines in the flow field (72).

In addition, two transonic cases were considered, using free stream Mach numbers of

0.789 and 0.829. Pressure coefficient comparisons across the bump surface for these cases

are shown in Figure D.3a, and b. The Mach 0.789 results show that the shock forms at
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Figure D.3 Transonic Surface Pressure

lower Mach numbers for the inviscid Euler solver than for the wind tunnel data. As a result

the shock location for the Mach 0.829 from the Euler solver is downstream of the shock

location from the wind tunnel data. Notice that the pressure data is in good agreement

upstream of the shock. These differences in transonic shock location are attributed to

viscous effects in the wind tunnel data not modeled in the inviscid solver. Specifically, the

wind tunnel flow field experiences separation on the aft section of the bump at transonic

Mach numbers, resulting in a large turbulent wake affecting shock location and strength

(72).

Such shock location differences are typical for inviscid CFD codes relative to viscous

data. A comparison between the inviscid research code and data from a validated Euler

code called COBALT is shown in Figure D.4 for Mach 0.789. The small upward spur at

x= 0.38 in the COBALT data is due to a grid abnormality, it is a non-physical anomaly.

The COBALT results were provided by the Graduate School of Engineering at Wright

State University, via personal correspondence. Good agreement is shown between this

research code and the validated Euler code for the transonic case. This demonstrates that

the inviscid research code performs appropriately within the limitations of the inviscid

assumption.

D-3



X

C
p

0.25 0.5 0.75

-0.75

-0.5

-0.25

0

0.25

Cobalt Data
Solver Data

Figure D.4 COBALT Surface Pressure Comparison for Mach 0.789

D.2 Supersonic Validation Case

Steady state supersonic flow over a 15 degree wedge at Mach 2 was the test case for

supersonic code validation. The Euler code was run to steady state with Mach 2 free stream

conditions using the computational mesh shown in Figure D.5.a. The resulting steady state

solution was compared to the exact inviscid solution from oblique shock theory found in

(74). The results are shown in Figure D.5.b. The dark line represents the exact solution,
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Figure D.5 Supersonic Validation at Mach 2
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which is an oblique shock wave attached to the nose of the wedge at an angel of 45.344

degrees. The line is jagged because the exact solution was translated to the nearest grid

point in the computational mesh. The contour lines are the Euler code solution super-

imposed on the exact solution. Notice that the contour lines are centered on the exact

solution. This indicates proper shock placement by the Euler code. The first-order Roe

solver spreads the shock over about three cells. This, combined with the angle at which

the shock crosses cell faces, causes the Mach contour lines from the Euler code to be spread

as is shown in Figure D.5.b. A comparison of the solver and exact flow field solutions after

the shock are shown in Table D.1. These are in good agreement.

Table D.1 Flow Values Behind Shock at Mach 2: Exact Vs. Euler Code
Exact Solver

U 0.786609 0.785441

V 0.210787 0.210474

Pressure 0.391902 0.39207

Density 1.72892 1.72812

Mach 1.44572 1.44282

D.3 Transpiration Boundary Condition Validation
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Figure D.6 Transpiration Boundary Condition Comparison

The transpiration boundary condition was validated with results for the bump prob-

lem at Mach 0.680 and 0.789. The grid from Figure D.1 was replaced with a rectangular
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grid, and the bump geometry was enforced with a transpiration boundary condition (47).

Surface pressure results from the Euler code using the transpiration boundary condition

(TBC) compared well with the pressure coefficients from the Euler code with the bump

geometry reflected in the grid. Pressure coefficient comparisons across the bump surface

for these cases are shown in Figure D.3a, and b.

D.4 Aeroelastic Panel Response
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Figure D.7 Unsteady Validation Data

The aeroelastic panel response was validated by comparison with results from the

literature using Mach 0.95 free stream conditions for air at sea level (µ = 0.1, ν = 0.3,

h/L = 0.002, L = 1). Panel response as a function of panel dynamic pressure is illustrated

in Figure D.7. The maximum panel deflection amplitude at the 12 -chord point is shown for

a range of λ. When λ was less than 1750, panel stiffness was sufficient to prevent unsteady

oscillatory behavior. Any initial panel deflection and velocity eventually damped to a static

deflection state, with the panel deflected either upwards or downwards depending on the

initial condition. For λ = 1000, the midpoint deflection for the aeroelastic panel at steady

state was 3.4 (wd/h) (for the case of upward deflection). This compared well with the

value of 3.8 (wd/h) found by Beran and Petit (9) for this condition.
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Values of λ above 1750 resulted in oscillatory panel behavior with the proper initial

condition, otherwise the panel deflection settled at the downward deflected static solution.

Figure D.7 illustrates how the upper static branch evolves into LCO, while the lower

branch remains static when 1750 > λ > 2500. At LCO conditions, panel peak deflections

at midpoint show a slight deviation with the archived results. With λ = 2500, Beran and

Petit (9) found (wd/h)max of 6.5, and (wd/h)min of −6.0. The results from Gordnier and

Visbal (56) were (wd/h)max of 6.8, and (wd/h)min of −6.4 for the same conditions. The

aeroelastic model used for this research found (wd/h)max of 5.90, and (wd/h)min of −5.5.
Similarly, at λ = 2000, Beran and Petit (9) found (wd/h)max of 6.0, and (wd/h)min of

−5.4, and the aeroelastic model used for this research produced (wd/h)max of 5.15, and

(wd/h)min of −5.05.

The mid-chord amplitude of the upward panel deflection during LCO is about 15%

lower than other cases reported in the literature. The variety of results in the literature

varied about 5% by comparison. The dissipation in the first order Roe solver provides

more damping of the high frequency panel deflections than the higher order solvers used

in the archived data. This additional damping is the primary cause of the muted panel

deflections. The muting of the upward panel deflection is not as prominent in the static

case.

Another, smaller contribution to the muted panel response came from the solver

implementation. Pressure values from the fluid solver were attributed to the centers of

each cell. In order to calculate the proper value of pressure at each panel node, the

pressures were extrapolated to each node by averaging the adjacent cell centers. Similarly,

panel deflections were extrapolated to each cell center by averaging the deflections at the

adjacent nodes. These averaging operations smoothed the panel response, introducing an

artificial stiffness that also contributed to the muted panel amplitudes.

Similar results were observed when compared with LCO results in the literature for

Mach 0.95 with E = 7.1×1010, and ρs = 2700. These conditions (not shown in Figure D.7)

translate to µ = 0.226851, and λ = 2392 when ν = 0.3. Hurka and Ballmann (54) found

(wd/h)max of 6.5, and (wd/h)min of −5.81. The results from Bendiksen and Davis (57)
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were (wd/h)max of 6.2, and (wd/h)min of −5.65 for the same conditions. The aeroelastic

model used for this research found (wd/h)max of 5.5, and (wd/h)min of −5.1.

In terms of the onset of LCO, general panel behavior, and the existence of a transonic

moving shock during LCO, the behavior of the aeroelastic model for both static and LCO

solutions from the full-system simulation are shown to be in good agreement with results

found in the literature for the same problem.
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Appendix E. Data and Software Archives

The location and nomenclature of the archived software, data, and results are described in

this appendix. Archived files have been provided to the research sponsor (AFRL/VASD,

Bldg. 146, 2210 Eighth Street, Wright-Patterson AFB OH 45433-7531) for each of the

model problems: quasi 1-D nozzle flow, 2-D blunt body flow, and the transonic aeroelastic

panel response. An example run of the aeroelastic panel model is provided to demonstrate

proper running of the archived software.

E.1 Description

E.1.1 Quasi 1-D Nozzle Archives. The quasi 1-D nozzle archives are located in

the zipped file named “1D nozzle.zip”. The executable program is in the “Debug” sub-

directory and is called “1D shock fit.exe”. The source code is provided in files with the

extension “.f90”. Files with the extension“.dat” are either read in by the executable pro-

gram, or represent results written in a format that can be used to restart the program,

feed other parts of the program (such as snapshot collection), or are results for plotting in

Matlab. Restart files are denoted “initialize.dat” or “init vec.dat”. The later represents

the last flow field output from the previous run. It is overwritten every time the model is

executed. The former is a stagnant restart file (typically some desirable initial flow field

from an earlier run whose file “init vec.dat” was renamed), that can be used repeatedly

to initialize a run with the same initial data. The number of grid points in the nozzle dis-

cretization, and the allocation of grid points to sections within the domain decomposition

are set within the source files, and cannot be modified at run time.

E.1.2 2-D Blunt Body Archives. The 2-D blunt body archives are located in

the zipped file named “2D Blunt Body.zip”. The executable program is in the “Debug”

subdirectory and is called “2D Blunt Body.exe”. The source code is provided in files with

the extension “.f90”. Cell centers are allocated to three domain decomposed sections using

the Matlab routine “domainMap3.m”. This program reads in the ascii files “steadys-

tate.AOA 0.M2.5.dat” and “steadystate.AOA 0.M5.dat” found in the archive, and uses

this data to allocate cell centers to sections. The output of the Matlab code is several
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files named “MapS1.dat”, “MapS2.dat”, and “MapS3.dat”. These are provided in the

archive, so the Matlab routine does not need to be rerun unless a change in the domain

decomposition is required.

The program can accommodate up to four arbitrary sub-domains. If the domain de-

composition is changed, then the global parameter specifications within “BluntBD DD lib”

need to be updated to match the number of domains and the values in the first two rows

of each “MapS#.dat” file. Snapshot files (“snapshot.dat”) consist of flow field data for the

entire domain. The creation of reduced order mappings “R S#.dat” and “Phi S#.dat” are

computed for each section using “snapshot.dat”. These files can be read into the program

by user command at run time, or they can be recreated as desired.

As for the previous model, restart files are denoted “initialize.dat” or “init vec.dat”.

The later represents the last flow field output from the previous run. It is overwritten

every time the model is executed. The former is a stagnant restart file (typically some

desirable initial flow field from an earlier run whose file “init vec.dat” was renamed), that

can be used repeatedly to initialize a run with the same initial data.

Several subdirectories are included containing the results of various runs. An archive

of different grids and domain decomposition mappings are also provided. The executable

code and the source code are configured to run the grid and domain decomposition pro-

vided in the main directory. Data output from the executable code with the extension

“.plt” is configured for the Tecplot graphics package. Tecplot was used to extract pres-

sure coefficients on the surface of the blunt body. These were saved into ascii files which

were read into Matlab using the mfiles “CLcalc.m” and “CLCD data.m”. These routines

integrate pressure to provide lift and drag coefficients.

E.1.3 Aeroelastic Panel Archives. The aeroelastic panel archives are located in

the zipped file named “Panel.zip”. The executable program is in the “Debug” subdirectory

and is called “Panel.exe”. The source code is provided in files with the extension “.f90”

or “.f”. Cell centers are allocated to three domain decomposed sections using the Matlab

routine “domain Pan3.m”. This program reads in the ascii file “grid.dat” found in the

archive, and uses this data to allocate cell centers to sections. The output of the Matlab
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code is several files named “MapS1.dat”, “MapS2.dat”, and “MapS3.dat”. These are

provided in the archive, so the Matlab routine does not need to be rerun unless a change

in the domain decomposition is required.

The fluid model is contained in “Panel flow lib.f90” The program can accommodate

up to four arbitrary sub-domains. If the domain decomposition is changed, then the

global parameter specifications within “Panel flow lib.f90” need to be updated to match

the number of domains and the values in the first two rows of each “MapS#.dat” file.

Snapshot files (“snapshot.dat”) consist of flow field data for the entire domain. The creation

of reduced order mappings “R S#.dat” and “Phi S#.dat” are computed for each section

using data from “snapshot.dat”. The files provided can be read into the program by user

command at run time, or they can be recreated as desired. For the flow model, restart

files are denoted “initialize.dat” or “init vec.dat”. The later represents the last flow field

output from the previous run. It is overwritten every time the model is executed. The

former is a stagnant restart file (typically some desirable initial flow field from an earlier

run whose file “init vec.dat” was renamed), that can be used repeatedly to initialize the

flow field with the same initial data. The flow field can also be initialized with slug flow

at a specified inlet mach number.

The structural model is contained in “Panel structure lib.f90”. The panel discretiza-

tion is set in the source code, and cannot be updated at run time. The panel deflection

can be initialized as a sine wave. The amplitude is operator selectable at run time. Other-

wise, panel restart files can be used to initialize the panel deflection. For the panel model,

restart files are denoted “panel.init.dat” or “panel.restart.dat”. The later represents the

last panel deflection state from the previous run. It is overwritten every time the model

is executed. The former is a stagnant restart file typically represent some repeatedly used

initial panel deflection. Panel dynamic pressure (λ) is operator selectable at run time.

Several subdirectories are included containing the results of various runs. An archive

of different grids and domain decomposition mappings are also provided. The executable

code and the source code are configured to run the fluid grid and domain decomposition

provided in the main directory. The executable code contains a panel model discretized
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with 101 equally spaced nodes. Data output from the executable code with the extension

“.plt” is configured for the Tecplot graphics package.

E.2 Example Run

To run the aeroelastic panel software, first extract the files from the zip file “Panel.zip”

onto a local directory of a computer using Windows 2000. If the software is to be run on

another operating system, the source code will have to be recompiled using a Fortran

90 compiler for that system. This program requires access to the IMSL subroutine li-

brary. Once the files are unzipped, access the “Panel” directory and execute the program

“Panel.exe”. The program will prompt the user to enter the grid data file. The default

file name is “grid.dat”. The source code and “.exe” file are configured for the “grid.dat”

provided in the archive. Using a new grid file for any other purpose than running the full

order model (options 0 and 1) will require a new domain decomposition, and updates to

the source code. Select the default grid file, and the program presents the user with some

data about the run, and a sequence of thirteen options.

The full order model can be run using either option 0 to obtain a steady state flow

field about a static panel deflection, or option 1 to obtain a time accurate solution, and

snapshots of the flow field evolution at evenly spaced intervals. Option 0 is useful for

obtaining a preconditioned initial flow filed for the time accurate integration.

Use option 1 to obtain the full order panel response, and collect snapshots for later

use. Under option 1, the user is prompted to provide the frequency that data will be

recorded during the run. This is the number of explicit time steps skipped between I/O

cycles. The user then chooses whether or not the entire flow field or panel deflection state

is to be written to file at every I/O cycle. These data files are formatted for Tecplot and

can be used for animations. However, the slow down the execution and create very large

data files. Regardless of the user response, the panel deflection history at the 1
2 and 3

4

chord points are written to “thist.dat” for analysis in Tecplot. The user is then prompted

to enter Mach number, dynamic pressure, non-dimensional time for the duration of the

time integration, the number of snapshots evenly spaced across the time integration, and

CFL number (less than one for stability of the full order solver). The flow field is initialized
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next, if slug flow is not desired, then the user has the option to specify the flow field from

that last time integration, or the flow field contained in “initialize.dat”. Next, the panel

deflection state is initialized in a similar manner. The final prompt commands the snapshot

file be written to memory automatically at the conclusion of the run. After any option is

completed, the initial list of thirteen options is redisplayed for the user to execute another

option, or exit the program.

Choosing option 2 will write the snapshots to the file “snapshot.dat”. This is not

necessary if the automatic write feature was selected for the option 1 run. This will

overwrite the old snapshot file, so be sure to rename it if overwriting is undesirable.

Option 3 can be used to read in the existing snapshot file. Two choices of filename are

provided, “snapshot.dat” or “snapshot.sect1.dat”. This feature allows the use of archived

snapshot files.

Options 4, 5, and 6 generate the reduced order mappings. These options require a

set of snapshots be previously provided via options 1 or 3. The reduced order mappings

are made for each domain section independently. The user is prompted whether or not

to view each eigenvalue one at a time (from largest to smallest). Choose this option to

customize the number of modes based on eigenvalue size. Otherwise, direct the program

to use all the modes without truncation, or select an eigenvalue size below which all modes

will be truncated. This suite of options is provided for each of the four fluid variables in

each section.

Options 4, 5, and 6 are time consuming, so option 55 allows the user to save the

reduced order mappings for future use. The mappings for sections I and II are saved

automatically once this option is selected, while the mapping for section III (the shock

region) is saved after a user prompt. Typically a different set of snapshots is used for the

non-shocked regions of the domain. Old files are over-written by this process, so be sure to

rename old files if this is undesirable. Option 56 reads in archived reduced order mapping

files produced using option 55.

Once the reduced order mappings are loaded, the reduced order model options 7, 8,

and 9 can be executed. Option 7 requires a two section domain decomposition (instead of
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three). The source code has to be modified to use this option. The source and executable

provided are configured for three domain sections, so use either option 8 or 9. Choosing

either of these, the user is prompted for the same inputs described for option 1 above. In

addition, the user is prompted to select which model to use in the shock region: POD/ROM

or full order. Next, the user is prompted for the CFL number. If the user has chosen a

POD/ROM for the shock region, then the CFL number can be as high as 2.5 for stability,

otherwise it must be less than 1. After initializing the flow field and the panel, the user

is prompted to select the regional time stepping parameters. The first prompt requests

a number that is the integer multiple of shock region time steps to skip between updates

of the flow field in section II. The size of the time step in section III was determined by

the CFL specification made earlier. The next prompt asks the user to specify the integer

number of section II updates that will be allowed to pass between updates of section III.

Finally, the user is prompted to specify the update of the Jacobian for section II

during the run. Jacobian updates are accomplished using full order function calls, so they

are expensive. For the domain decomposition provided, no Jacobian updates are necessary.

If the user chooses to update the Jacobian, the program prompts the user for the integer

number of section II flow field updates between Jacobian updates.
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Appendix F. Analysis of Domain Size on Panel Response

The large domain used for the aeroelastic panel problem is shown below in Figure F.1. The

large domain was intended to contain all the flow dynamics, and the arbitrary choice of 25

chord lengths in all directions provides the same solution domain used by other authors for

the same problem (9, 54). Extending the domain to include all flow dynamics facilitates

the use of characteristic boundary conditions for the outer portion of the domain. This

appendix explores the effect of reduced domain size on the aeroelastic panel response. For

this analysis, section I of the domain was removed, and characteristic boundary conditions

were used to model the outlying portions of this much smaller domain.

Section I

Section II

Section III

Figure F.1 Panel Problem Domain Decomposition

To evaluate the effect of eliminating the far field, the full system panel response

was computed using a 100 node (streamwise) by 50 node (vertical) grid covering three

chord lengths fore and aft of the panel, and four chord lengths in the vertical direction.

This domain roughly equaled the near field and shock region portion of the larger domain

used in the dissertation research. In addition, the number and spacing of grid points were

comparable to the number and spacing of grid points contained in the same region of the

larger computational mesh.

A time history for 100 non-dimensional time units was computed using the full system

simulation, an initial flow condition of slug flow at Mach 0.95, and an initial panel deflection

consisting of a sine wave with peak amplitude deflected downward by 0.001. The panel

dynamic pressure (λ) was 2500. An identical time history was computed for the full system

model using the larger domain. The results are shown in the Figure F.2.
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Figure F.2 Unsteady Validation Data

The transient time history results in the phase difference evident in the time history

plot of the 3
4 -chord point deflection (top part of Figure F.2). Since the reduction in

domain size does not preclude the onset of panel LCO, this difference in transient response

is considered minor. However, the LCO that is established with the smaller domain is

markedly different than the LCO obtained with the full domain. These differences are

marked on the time history and phase plot (lower part of Figure F.2) as numbers I, II,

III, and IV. Phase non-linearity (I) is much larger with the smaller domain than the same

portion of the full-domain response. This extends the panel oscillation period, while non-

linearities (II, III, and IV) reduces the panel oscillation period. The last three errors mute

the panel reponse, resulting in an overall reduction in panel oscillation period relative to

the full-domain response. More significantly, the amplitude of the panel response is over

10% greater with the smaller domain.
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These differences in panel response warrant the additional degrees of freedom con-

tained in the far field section of the domain. Clearly its presence has a significant impact

to the panel response. The reduced order model results for both λ = 2500 and λ = 2000

(as depicted in Figure 5.8 and Figure 5.9 of the dissertation, respectively) do a much better

job of modeling the panel LCO response than the full-system model with a smaller domain.

The presence of the far field in both the POD/ROM/DD cases (Full-case and POD-case)

clearly makes an important contribution to the overall solution.
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